Journal of Materials Science

, Volume 50, Issue 15, pp 5191–5203 | Cite as

Thermo-mechanical factors influencing annealing twin development in nickel during recrystallization

  • Y. Jin
  • B. Lin
  • A. D. Rollett
  • G. S. Rohrer
  • M. Bernacki
  • N. Bozzolo
Original Paper


The effects of prior stored energy level, annealing temperature, heating velocity, and initial grain size on annealing twin development during static recrystallization of commercially pure nickel (99.999 %) are investigated. The twin content (measured as the twin boundary density or as the number of twins per grain) at the end of recrystallization is shown to be primarily influenced by the prior stored energy level and by the initial grain size, but the effects of heating rate and the annealing temperature are negligible. Taken together, the results are consistent with a new proposition that roughness of the recrystallization front promotes the formation of annealing twins during recrystallization.


Twin Boundary Boundary Migration Annealing Twin Twin Density Grain Boundary Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by the French National Research Agency (ANR project called FORMATING: ANR-11-NS09-001-01) and the Materials World Network of the US National Science Foundation under grant number DMR-1107986.


  1. 1.
    Wantanabe T (1984) Grain boundary design and control. Res Mech 11:47–84Google Scholar
  2. 2.
    Kumar M, King WE, Schwartz AJ (2000) Modifications to the microstructural topology in F.C.C. materials through thermomechanical processing. Acta Mater 48:2081–2091CrossRefGoogle Scholar
  3. 3.
    Randle V (2004) Twinning-related grain boundary engineering. Acta Mater 52:4067–4081CrossRefGoogle Scholar
  4. 4.
    Carpenter H, Tamura S (1926) The formation of twinned metallic crystals. Proc. R. Soc. 113:161CrossRefGoogle Scholar
  5. 5.
    Gleiter H (1969) The formation of annealing twins. Acta Metall 17:1421–1428CrossRefGoogle Scholar
  6. 6.
    Pande CS, Imam MA, Rath BB (1990) Study of annealing twins in FCC metals and alloys. Metall Trans A 21:2891–2896CrossRefGoogle Scholar
  7. 7.
    Mahajan S, Pande CS, Imam MA, Rath BB (1997) Formation of annealing twins in F.C.C. crystals. Acta Mater 45:2633–2638CrossRefGoogle Scholar
  8. 8.
    Song KH, Chun YB, Hwang SK (2007) Direct observation of annealing twin formation in a Pb-base alloy. Mater Sci Eng A 454–455:629–636CrossRefGoogle Scholar
  9. 9.
    Thomson CB, Randle V (1990) A study of twinning in nickel. Scr Mater 35:385–390CrossRefGoogle Scholar
  10. 10.
    Lee S-L, Richards NL (2005) The effect of single-step low strain and annealing of nickel on grain boundary character. Mater Sci Eng A 30:81–87CrossRefGoogle Scholar
  11. 11.
    Cahoon JR, Li Q, Richards NL (2009) Microstructural and processing factors influencing the formation of annealing twins. Mater Sci Eng A 526:56–61CrossRefGoogle Scholar
  12. 12.
    Jin Y, Lin B, Bernacki M, Rohrer GS, Rollett AD, Bozzolo N (2014) Annealing twin development during recrystallization and grain growth in pure Nickel. Mater Sci Eng A 597:295–303CrossRefGoogle Scholar
  13. 13.
    Romero RJ, Murr LE (1995) Torque-related lamellar carbide growth associated with annealing twin in 304 stainless steel. Acta Metall Mater 43:461–469CrossRefGoogle Scholar
  14. 14.
    Li B, Tin S (2014) The role of deformation temperature and strain on grain boundary engineering of Inconel 600. Mater Sci Eng A 603:104–113CrossRefGoogle Scholar
  15. 15.
    Wang W, Brisset F, Helbert AL, Solas D, Drouelle I, Mathon MH, Baudin T (2014) Influence of stored energy on twin formation during primary recrystallization. Mater Sci Eng A 1(589):112–118CrossRefGoogle Scholar
  16. 16.
    Bair JL, Hatch SL, Field DP (2014) Formation of annealing twin boundaries in nickel. Scr Mater 81:52–55CrossRefGoogle Scholar
  17. 17.
    Chen XP, Li LF, Sun HF, Wang LX, Liu Q (2015) Studies on the evolution of annealing twins during recrystallization and grain growth in highly rolled pure nickel. Mater Sci Eng A 622:108–113CrossRefGoogle Scholar
  18. 18.
    Li Z, Zhang L, Sun N, Sun Y, Shan A (2014) Effects of prior deformation and annealing process on microstructure and annealing twin density in a nickel based alloy. Mater Charact 95:299–306CrossRefGoogle Scholar
  19. 19.
    Randle V (2002) Sigma-boundary statistics by length and number. Interface Sci 10:271–277CrossRefGoogle Scholar
  20. 20.
    Kumar M, King WE (2005) Universal features of grain boundary networks in FCC materials. J Mater Sci 40:847–852. doi: 10.1007/s10853-005-6500-9 CrossRefGoogle Scholar
  21. 21.
    Alvi MH, Cheong SW, Suni JP, Weiland H, Rollett AD (2008) Cube texture in hot-rolled aluminum alloy 1050 (AA1050)—nucleation and growth behavior. Acta Mater 56:3098–3108CrossRefGoogle Scholar
  22. 22.
    Brandon DG (1969) The structure of high-angle grain boundaries. Acta Metall 14:1479–1484CrossRefGoogle Scholar
  23. 23.
    Wang W, Lartigue-Korinek S, Brisset F, Helbert AL, Bourgon J, Baudin T (2015) Formation of annealing twins during primary recrystallization of two low stacking fault energy Ni-based alloys. J Mater Sci 50:2167–2177. doi: 10.1007/s10853-014-8780-4 CrossRefGoogle Scholar
  24. 24.
    Wang S, Holm EA, Suni J, Alvi MH, Kalu PN, Rollett AD (2011) Modeling the recrystallized grain size in single phase materials. Acta Mater 59:3872–3882CrossRefGoogle Scholar
  25. 25.
    Maksimova EL, Robkin EI, Shvindleman LS, Straumal BB (1989) Phase transitions at grain boundaries in the presence of impurities. Acta Metal 37:1995–1998CrossRefGoogle Scholar
  26. 26.
    Zhang H, Srolovitz DJ (2006) Characterization of atomic motion governing grain boundary migration. Phys Rev B 74:115404CrossRefGoogle Scholar
  27. 27.
    Yan X, Zhang H (2010) On the atomistic mechanisms of grain boundary migration in [001] twist boundaries: molecular dynamics simulations. Comput Mater Sci 48:773–782CrossRefGoogle Scholar
  28. 28.
    Zhang H, Srolovitz DJ, Douglas JF, Warren JA (2009) Grain boundaries exhibit the dynamics of glass-forming liquids. PNAS 106:7735–7740CrossRefGoogle Scholar
  29. 29.
    Humphreys FJ (2004) Recrystallization and related annealing phenomena. M. Hatherly, Elsevier, AmsterdamGoogle Scholar
  30. 30.
    Epstein N (1989) On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem Eng Sci 44:777–779CrossRefGoogle Scholar
  31. 31.
    Martorano MA, Fortes MA, Padilha AF (2006) The growth of protrusion at the boundary of a recrystallized grain. Acta Mater 54:2769–2776CrossRefGoogle Scholar
  32. 32.
    Kumar M, Schwartz AJ, King WE (2002) Microstructural evolution during grain boundary engineering of low to medium stacking fault energy fcc materials. Acta Mater 50:2599–2612CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Y. Jin
    • 1
  • B. Lin
    • 2
  • A. D. Rollett
    • 2
  • G. S. Rohrer
    • 2
  • M. Bernacki
    • 1
  • N. Bozzolo
    • 1
  1. 1.MINES ParisTechPSL - Research University, CEMEF - Centre de mise en forme des matériaux, CNRS UMR 7635Sophia Antipolis CedexFrance
  2. 2.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations