Journal of Materials Science

, Volume 50, Issue 13, pp 4683–4697 | Cite as

A comparative analysis of solubility, segregation, and phase formation in atomized and cryomilled Al–Fe alloy powders

  • Brandon D. Saller
  • Tao Hu
  • Kaka Ma
  • Lilia Kurmanaeva
  • Enrique J. Lavernia
  • Julie M. Schoenung
Original Paper


Bulk nanostructured and ultrafine-grained binary Al–Fe alloys have been studied in the past for their remarkable strength, hardness, and thermal stability. These properties have been attributed to a combination of solid solution strengthening, precipitate strengthening, and grain boundary strengthening. However, to date, no systematic investigation has been performed to address the factors that govern the evolution of the various metastable and equilibrium precipitates that form as a result of thermal exposure. In this study, Al–2at.%Fe and Al–5at.%Fe powders were synthesized via helium gas atomization and argon gas atomization, respectively. Cooling rates upwards of 106 K s−1 were achieved resulting in an intermetallic-free starting structure, and a map of the structure as a function of cooling rate was established. Electron backscatter diffraction analysis revealed the presence of a larger number of low-angle grain boundaries relative to high-angle grain boundaries, which influenced nucleation and precipitation of the metastable Al6Fe phase. Cryomilling of the atomized powder was subsequently performed, which led to grain refinement into the nanometer regime, dispersion of the Fe-containing phases, and forcing of 2at.%Fe into solution within the Al matrix compared to negligible Fe in solution in the as-atomized state. Finally, differential scanning calorimetry was utilized to elucidate the metastable Al6Fe precipitation temperature (~300 °C) and subsequent phase transformation to the equilibrium Al13Fe4 phase (~400 °C). An activation energy analysis utilizing the Kissinger method revealed three important factors, in order of importance, for ease of Al6Fe precipitation: segregated regions containing iron, availability of nucleation sites, and the number of diffusion pathways.


Severe Plastic Deformation Atomize Powder Master Plot Cryomilled Powder Powder Particle Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge helpful EBSD discussions with Scott Sitzman of Oxford Instruments. Dr. Baolong Zheng of UC Davis is thanked for assistance with gas atomization experiments. The assistance with cryomilling by Hanry Yang is greatly appreciated. The authors would like to acknowledge financial support provided by the Office of Naval Research (Grant No. ONR N00014-12-1-0237) with Dr. Lawrence Kabacoff as the program officer.


  1. 1.
    Belov NA, Aksenov AA, Eskin DG (2002) Iron in aluminum alloys: impurity and alloying element. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Jones H (1969) Observations on a structural transition in aluminium alloys hardened by rapid solidification. Mater Sci Eng 5:1–18. doi: 10.1016/0025-5416(69)90077-9 CrossRefGoogle Scholar
  3. 3.
    Sasaki TT, Ohkubo T, Hono K (2009) Microstructure and mechanical properties of bulk nanocrystalline Al–Fe alloy processed by mechanical alloying and spark plasma sintering. Acta Mater 57:3529–3538. doi: 10.1016/j.actamat.2009.04.012 CrossRefGoogle Scholar
  4. 4.
    Tonejc A (1971) X-ray study of the decomposition of metastable Al-rich Al–Fe solid solutions. Metall Trans 2:437–440. doi: 10.1007/BF02663331 CrossRefGoogle Scholar
  5. 5.
    Nayak SS, Wollgarten M, Banhart J et al (2010) Nanocomposites and an extremely hard nanocrystalline intermetallic of Al–Fe alloys prepared by mechanical alloying. Mater Sci Eng, A 527:2370–2378. doi: 10.1016/j.msea.2009.12.044 CrossRefGoogle Scholar
  6. 6.
    Kim DH, Cantor B (1994) Structure and decomposition behaviour of rapidly solidified Al-Fe alloys. J Mater Sci 29:2884–2892. doi: 10.1007/BF01117597 CrossRefGoogle Scholar
  7. 7.
    Cantor B, Cahn RW (1976) Precipitation of equilibrium phases in vapour-quenched Al–Ni, Al–Cu, and Al–Fe alloys. J Mater Sci 11:1066–1076. doi: 10.1007/BF00553114 CrossRefGoogle Scholar
  8. 8.
    Liu W, Yang J, Xiao B (2009) Application of Bayer red mud for iron recovery and building material production from alumosilicate residues. J Hazard Mater 161:474–478. doi: 10.1016/j.jhazmat.2008.03.122 CrossRefGoogle Scholar
  9. 9.
    Sasaki H, Kita K, Nagahora J, Inoue A (2001) Nano-metals I. nanostructures and mechanical properties of bulk Al–Fe Alloys prepared by electron-beam deposition. Mater Trans 42:1561–1565. doi: 10.2320/matertrans.42.1561 CrossRefGoogle Scholar
  10. 10.
    Mukhopadhyay DK, Suryanarayana C, Froes FH (1995) Structural evolution in mechanically alloyed Al–Fe powders. Metall Mater Trans A 26:1939–1946. doi: 10.1007/BF02670665 CrossRefGoogle Scholar
  11. 11.
    Cubero-Sesin JM, Horita Z (2012) Mechanical properties and microstructures of Al–Fe alloys processed by high-pressure torsion. Metall Mater Trans A 43:5182–5192. doi: 10.1007/s11661-012-1341-z CrossRefGoogle Scholar
  12. 12.
    Fadeeva VI, Leonov AV (1992) Formation of Al–Fe supersaturated solid solution by mechanical alloying. Mater Sci Forum 88:481–488CrossRefGoogle Scholar
  13. 13.
    Fadeeva VI, Leonov AV, Khodina LN (1995) Metastable phases in mechanically alloyed Al–Fe system. Mater Sci Forum 179:397–402CrossRefGoogle Scholar
  14. 14.
    Zheng B, Lin Y, Zhou Y, Lavernia EJ (2009) Gas atomization of amorphous aluminum powder: part II experimental investigation. Metall Mater Trans B 40:995–1004. doi: 10.1007/s11663-009-9277-4 CrossRefGoogle Scholar
  15. 15.
    Lu L (1997) Mechanical alloying. Springer, BerlinGoogle Scholar
  16. 16.
    Kissinger H (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bureau Stand 57:217–221CrossRefGoogle Scholar
  17. 17.
    Boettinger WJ, Bendersky L, Early JG (1986) An analysis of the microstructure of rapidly solidified Al-8 wt pct Fe powder. MTA 17:781–790. doi: 10.1007/BF02643853 CrossRefGoogle Scholar
  18. 18.
    Roy B (2002) Fundamentals of Classical and Statistical Thermodynamics. Wiley, West SussexGoogle Scholar
  19. 19.
    Forsythe W (1954) Smithsonian physical tables, 9th edn, vol 120. Smithsonian Institution, WashingtonGoogle Scholar
  20. 20.
    Lu H, Sivaprasad P, Davies CHJ (2003) Treatment of misorientation data to determine the fraction of recrystallized grains in a partially recrystallized metal. Mater Charact 51:293–300. doi: 10.1016/j.matchar.2004.01.005 CrossRefGoogle Scholar
  21. 21.
    Tarasiuk J, Gerber P, Bacroix B (2002) Estimation of recrystallized volume fraction from EBSD data. Acta Mater 50:1467–1477. doi: 10.1016/S1359-6454(02)00005-8 CrossRefGoogle Scholar
  22. 22.
    Sun Y, Kulkarni K, Sachdev AK, Lavernia EJ (2014) Synthesis of gamma-TiAl by reactive spark sintering of cryomilled Ti and Al powder blend, part 1: influence of processing and microstructural evolution. Metall Mater Trans A 45A:2750–2758CrossRefGoogle Scholar
  23. 23.
    Koch CC (1993) The Synthesis and structure of nanocrystalline materials produced by mechanical attrition: a review. Nanostruct Mater 2:109–129CrossRefGoogle Scholar
  24. 24.
    Suryanarayana C, Grant Norton M (1998) X-ray diffraction: a practical approach. Plenum Press, New YorkCrossRefGoogle Scholar
  25. 25.
    Witkin DB, Lavernia EJ (2006) Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci 51:1–60. doi: 10.1016/j.pmatsci.2005.04.004 CrossRefGoogle Scholar
  26. 26.
    Han BQ, Zhang Z, Lavernia EJ et al (2004) Mechanical behavior of a cryomilled nanostructured Al-7.5 pct Mg alloy. Metall Mater Trans A 35:947–949. doi: 10.1007/s11661-004-0019-6 CrossRefGoogle Scholar
  27. 27.
    Anderson JD (2003) Modern compressible flow, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  28. 28.
    Dykhuizen RC, Smith MF (1998) Gas dynamic principles of cold spray. J Therm Spray Tech 7:205–212. doi: 10.1361/105996398770350945 CrossRefGoogle Scholar
  29. 29.
    Hughes IR, Jones H (1976) Coupled eutectic growth in Al-Fe alloys. J Mater Sci 11:1781–1793. doi: 10.1007/BF00708256 CrossRefGoogle Scholar
  30. 30.
    Adam CM, Hogan LM (1975) Crystallography of the Al–Al3 Fe eutectic. Acta Metall 23:345–354. doi: 10.1016/0001-6160(75)90127-3 CrossRefGoogle Scholar
  31. 31.
    Cardoso K, Escorial AG, Lieblich M, Botta FW (2001) Amorphous and nanostructured Al–Fe–Nd powders obtained by gas atomization. Mater Sci Eng, A 315:89–97. doi: 10.1016/S0921-5093(01)01197-2 CrossRefGoogle Scholar
  32. 32.
    Groza JR, Shackelford JF, Lavernia EJ, Powers MT (2007) Materials processing handbook. CRC Press, Boca RatonGoogle Scholar
  33. 33.
    Lavernia EJ, Wu Y (1996) Spray atomization and deposition. Wiley, West SussexGoogle Scholar
  34. 34.
    Pickens JR (1981) Aluminium powder metallurgy technology for high-strength applications. J Mater Sci 16:1437–1457. doi: 10.1007/BF00553958 CrossRefGoogle Scholar
  35. 35.
    Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184. doi: 10.1016/S0079-6425(99)00010-9 CrossRefGoogle Scholar
  36. 36.
    Lavernia EJ, Han BQ, Schoenung JM (2008) Cryomilled nanostructured materials: processing and properties. Mater Sci Eng, A 493:207–214. doi: 10.1016/j.msea.2007.06.099 CrossRefGoogle Scholar
  37. 37.
    Mohamed FA (2003) A dislocation model for the minimum grain size obtainable by milling. Acta Mater 51:4107–4119. doi: 10.1016/S1359-6454(03)00230-1 CrossRefGoogle Scholar
  38. 38.
    Hohne G, Hemminger WF, Flammersheim H-J (2003) Differential scanning calorimetry, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  39. 39.
    Tonejc A (1971) X-ray study of the decomposition of metastable Al-rich Al–Fe solid solutions. Metall Trans 2:437–440. doi: 10.1007/BF02663331 CrossRefGoogle Scholar
  40. 40.
    DE Laughlin, Hono K (2014) Physical metallurgy, 5th edn. Elsevier, AmsterdamGoogle Scholar
  41. 41.
    Callister WD Jr (2007) Materials science and engineering an introduction, 7th edn. Wiley, New YorkGoogle Scholar
  42. 42.
    Porter DA, Easterling KE, Sherif MY (2009) Phase transformations in metals and alloys, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  43. 43.
    Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Pergamon, OxfordGoogle Scholar
  44. 44.
    Hashemi-Sadraei L, Mousavi SE, Vogt R et al (2012) Influence of nitrogen content on thermal stability and grain growth kinetics of cryomilled Al nanocomposites. Metall Mater Trans A 43:747–756. doi: 10.1007/s11661-011-0882-x CrossRefGoogle Scholar
  45. 45.
    Li Y, Liu W, Ortalan V et al (2010) HRTEM and EELS study of aluminum nitride in nanostructured Al 5083/B4C processed via cryomilling. Acta Mater 58:1732–1740. doi: 10.1016/j.actamat.2009.11.015 CrossRefGoogle Scholar
  46. 46.
    Ye J, Han BQ, Schoenung JM (2006) Mechanical behaviour of an Al–matrix composite reinforced with nanocrystalline Al-coated B4C particulates. Philos Mag Lett 86:721–732. doi: 10.1080/09500830600986109 CrossRefGoogle Scholar
  47. 47.
    Shabashov VA, Brodova IG, Mukoseev AG et al (2007) Deformation-induced phase transformations in the Al–Fe system under intensive plastic deformation. J Phys: Condens Matter 19:386222. doi: 10.1088/0953-8984/19/38/386222 Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Brandon D. Saller
    • 1
  • Tao Hu
    • 1
    • 2
  • Kaka Ma
    • 1
  • Lilia Kurmanaeva
    • 1
  • Enrique J. Lavernia
    • 1
  • Julie M. Schoenung
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of California—DavisDavisUSA
  2. 2.Department of NanoEngineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations