Journal of Materials Science

, Volume 50, Issue 13, pp 4629–4635 | Cite as

Sensitivity of thermo-electric power measurements to α–α′ phase separation in Cr-rich oxide dispersion strengthened steels

  • Malki Pinkas
  • Zvi Foxman
  • Nataly Froumin
  • Peter Hähner
  • Louisa Meshi
Original Paper


The sensitivity of thermo-electric power (TEP) measurement to detect the undesired α–α′ phase separation occurring in Cr-rich oxide dispersion strengthened steels was investigated. TEP values were found to increase with time of exposure to 475 °C—the maximum temperature of the miscibility gap in Fe–Cr alloys. Exposure to 650 °C did not induce any changes in the TEP value. By examining the bend contours in dark-field TEM images, α′ precipitates were evidenced in aged PM2000. Using the Fe–XCr–YAl model alloys and X-ray photoelectron spectroscopy, the changes in TEP were traced back to the depletion of Cr from the matrix, caused by the formation of the Cr-rich α′ phase. By quantifying the effect of Cr content on the TEP value of model alloys, it was estimated that following 1000 h of aging, the Cr concentration in the α matrix of PM2000 alloy was reduced from 20 to ~13.5 at.%.


Duplex Stainless Steel Oxide Dispersion Strengthened Oxide Dispersion Strengthened Alloy Oxide Dispersion Strengthened Steel Phonon Drag 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Dr. Y. Gelbstein for performing the TEP measurements and Mr. O. Omassi for casting the model alloys. This study was supported by a dedicated collaboration agreement between the Israel Atomic Energy Commission and the Joint Research Centre of the European Commission.


  1. 1.
    De Bremaecker A (2012) Phase separation in PM 2000 (TM) Fe-base ODS alloy: experimental study at the atomic level. J Nucl Mater 428(2012):13–30CrossRefGoogle Scholar
  2. 2.
    Verhiest K, Almazouzi A, De Wispelaer N, Petrov R, Claessens S (2009) Development of oxides dispersion strengthened steels for high temperature nuclear reactor applications. J Nucl Mater 385:308–311CrossRefGoogle Scholar
  3. 3.
    Lindau R, Möslang A, Rieth M, Klimiankou M, Materna-Morris E, Alamo A, Tavassoli AF, Cayron C (2005) Present development status of EUROFER and ODS-EUROFER for application in blanket concepts. Fusion Eng Des 75–79:989–996CrossRefGoogle Scholar
  4. 4.
    Dubuisson P, de Carlan Y, Garat V, Blat M (2012) ODS Ferritic/martensitic alloys for Sodium Fast Reactor fuel pin cladding. J Nucl Mater 428:6–12CrossRefGoogle Scholar
  5. 5.
    de Carlan Y, Bechade J-L, Dubuisson P, Seran J-L, Billot P, Bougault A, Cozzika T, Doriot S (2009) CEA developments of new ferritic ODS alloys for nuclear applications. J Nucl Mater 386–388:430–432CrossRefGoogle Scholar
  6. 6.
    Capdevila C, Miller MK, Chao RJ, Russel KF, Chao J, Gonzalez-Carrasco JL (2008) Phase separation in PM 2000 (TM) Fe-base ODS alloy: experimental study at the atomic level. Mat Sci Eng A Struct Mater 490:277–288CrossRefGoogle Scholar
  7. 7.
    Capdevila C, Miller MK, Toda I, Chao J (2010) Influence of the alpha-alpha’ phase separation on the tensile properties of Fe-base ODS PM 2000 alloy. Mat Sci Eng A Struct Mater 490:277–288CrossRefGoogle Scholar
  8. 8.
    Kobayashi S, Takasugi T (2010) Mapping of 475 °C embrittlement in ferritic Fe–Cr–Al alloys. Scr Mater 63:1104–1107CrossRefGoogle Scholar
  9. 9.
    Barnard RD (1972) Thermoelectricity in metals and alloys. Taylor & Francis Ltd, LondonGoogle Scholar
  10. 10.
    Raynaud GM, Guyot P (1988) Coherent precipitation effect on thermo-power of Al–Cu alloys. Acta Metal 36:143–147CrossRefGoogle Scholar
  11. 11.
    Tkalcec I, Azcoitia C, Crevoiserat S, Mari D (2004) Tempering effects on a martensitic high carbon steel. Mat Sci Eng A Struct Mater 387:352CrossRefGoogle Scholar
  12. 12.
    Abdala MRWS, de Blas JCG, Barbosa C, Acselrad O (2008) Thermoelectrical power analysis of precipitation in 6013 aluminum alloy. Mater Charact 59:271CrossRefGoogle Scholar
  13. 13.
    Acosta B, Sevini F (2004) Evaluation of irradiation damage effect by applying electric properties based techniques. Nucl Eng Des 229:165–173CrossRefGoogle Scholar
  14. 14.
    Niffenegger M, Leber HJ (2009) Monitoring the embrittlement of reactor pressure vessel steels by using the Seebeck coefficient. J Nucl Mater 389:62–67CrossRefGoogle Scholar
  15. 15.
    Niffenegger M, Reichlin K, Kalkhof D (2005) Application of the Seebeck effect for monitoring of neutron embrittlement and low-cycle fatigue in nuclear reactor steel. Nucl Eng Des 235:1777–1788CrossRefGoogle Scholar
  16. 16.
    Kawaguchi Y, Yamanaka S (2004) Applications of thermoelectric power measurement to deterioration diagnosis of nuclear material and its principle. J Nondestruct Eval 23:65CrossRefGoogle Scholar
  17. 17.
    Kawaguchi Y, Yamanaka S (2002) Mechanism of the change in thermoelectric power of cast duplex stainless steel due to aging. J Alloys Compd 336:301–304CrossRefGoogle Scholar
  18. 18.
    Ukai S, Fujiwara M (2002) Perspective of ODS alloys application in nuclear environments. J Nucl Mater 307–311:749–757CrossRefGoogle Scholar
  19. 19.
    Mott NF, Jones H (1958) The theory of the properties of metals and alloys. Dover Publications, New York, pp 305–314Google Scholar
  20. 20.
    Pollock DD (1985) Thermoelectricity; theory, thermometry, tool, ASTM STP 852, Philadelphia. ASTM, PhiladelphiaCrossRefGoogle Scholar
  21. 21.
    Kittel C (2004) Introduction to solid state physics, 8th edn. Wiley, HobokenGoogle Scholar
  22. 22.
    Kugler W, Knorr K, Prandl W (1983) Study of X-ray-diffraction in magnetostrictive distortion waves in chromium—amplitude and temperature-dependance. Z Kristallogr 162:151–153Google Scholar
  23. 23.
    Giles PM, Longenbach MH, Marder AR (1971) High-pressure α↔ε martensitic transforamtion in iron. J Appl Phys 42:4290–4295CrossRefGoogle Scholar
  24. 24.
    Fultz B, Howe J (2013) Transmission electron microscopy and diffractometry of materials, 4th edn. Springer, New York, p 363CrossRefGoogle Scholar
  25. 25.
    Capdevila C, Miller MK, Chao J (2012) Phase separation kinetics in a Fe–Cr–Al alloy. Acta Mater 60:4673–4684CrossRefGoogle Scholar
  26. 26.
    Cahn WJ (1963) Hardening by spinodal decomposition. Acta Metal 11(12):1275–1281CrossRefGoogle Scholar
  27. 27.
    Nordheim L, Gorter CJ (1935) emerkungen über thermokraft und widerstan. Physica 2:383–390CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Malki Pinkas
    • 1
  • Zvi Foxman
    • 2
    • 3
  • Nataly Froumin
    • 3
  • Peter Hähner
    • 4
  • Louisa Meshi
    • 2
    • 3
  1. 1.Nuclear Research Center-NegevBeer-ShevaIsrael
  2. 2.Department of Materials EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael
  3. 3.Ilse Katz Institute for Nanoscale Science & TechnologyBen-Gurion University of the NegevBeer-ShevaIsrael
  4. 4.Institute for Energy and TransportEuropean Commission, Joint Research CentrePettenThe Netherlands

Personalised recommendations