Journal of Materials Science

, Volume 50, Issue 13, pp 4526–4535 | Cite as

Xerocellulose: lightweight, porous and hydrophobic cellulose prepared via ambient drying

  • Georg Pour
  • Christian Beauger
  • Arnaud Rigacci
  • Tatiana Budtova
Original Paper


Low density, highly porous and hydrophobic cellulose-based new material, Xerocellulose, was prepared and characterised. First, tritylcellulose with different degrees of substitution (DS) was synthesised in homogeneous conditions. Xerocellulose was then prepared from tritylcellulose via dissolution–coagulation–drying route, similar to other polysaccharide-based aerogels, but drying was performed in ambient room conditions. The new material has a density between 0.1 and 0.2 g/cm3 and is highly hydrophobic with contact angle 140° for DS = 0.72. Compared with cellulose aerogel and pristine microcrystalline cellulose, Xerocellulose obtained from tritylcellulose with DS = 0.72 showed a drastically decreased water vapour uptake. The evolution of Xerocellulose density and morphology as a function of the DS is presented and discussed.


Cellulose Contact Angle Microcrystalline Cellulose Cellulose Chain Cellulose Whisker 



Part of research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No 260141. Part of this work was financed by ADEME (France) in the frame of Silica-Cell project. Authors gratefully acknowledge the help of Suzanne Jacomet (CEMEF, Mines ParisTech) in SEM experiments, Gabriel Monge (CEMEF, Mines ParisTech) for performing XRD experiments and Pierre Ilbizian (PERSEE, Mines ParisTech) for supercritical drying.

Supplementary material

10853_2015_9002_MOESM1_ESM.docx (666 kb)
Supplementary material 1 (DOCX 666 kb)


  1. 1.
    Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135CrossRefGoogle Scholar
  2. 2.
    Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose from cellulose-NaOH aqueous solutions. Biomacromolecules 9:269–277CrossRefGoogle Scholar
  3. 3.
    Liebner F, Haimer E, Potthast A, Loidl D, Tschegg S, Neouze M-A, Wendland M, Rosenau T (2009) Cellulosic aerogels as ultra-lightweight materials. Part 2: synthesis and properties. Holzforschung 63:3–11CrossRefGoogle Scholar
  4. 4.
    Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129CrossRefGoogle Scholar
  5. 5.
    Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose-ionic liquid and cellulose-NMMO routes. Carbohydr Polym 83:1766–1774CrossRefGoogle Scholar
  6. 6.
    Sescousse R, Gavillon R, Budtova T (2011) Wet and dry highly porous cellulose beads from cellulose-NaOH-water solutions: influence of the preparation conditions on beads shape and encapsulation of inorganic particles. J Mater Sci 46:759–765. doi: 10.1007/s10853-010-4809-5 CrossRefGoogle Scholar
  7. 7.
    Pinnow M, Fink H-P, Fanter C, Kunze J (2008) Characterization of highly porous materials from cellulose carbamate. Macromol Symp 262:129–139CrossRefGoogle Scholar
  8. 8.
    García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438CrossRefGoogle Scholar
  9. 9.
    Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem Int Ed 51:2076–2079CrossRefGoogle Scholar
  10. 10.
    Rudaz C, Courson R, Bonnet L, Calas-Etienne C, Sallee H, Budtova T (2014) Aeropectin: fully biomass-based mechanically strong and thermal super-insulating aerogel. Biomacromolecules 15:2188–2195CrossRefGoogle Scholar
  11. 11.
    Shi J, Lu L, Guo W, Sun T, Cao Y (2013) An environment-friendly thermal insulation material from cellulose and plasma modification. J Appl Polym Sci 130:3652–3658CrossRefGoogle Scholar
  12. 12.
    Guilminot E, Gavillon R, Chatenet M, Berthon-Fabry S, Rigacci A, Budtova T (2008) New nanostructured carbons based on porous cellulose: elaboration, pyrolysis and use as platinum nanoparticles substrate for oxygen reduction electrocatalysis. J Power Source 185:717–726CrossRefGoogle Scholar
  13. 13.
    Rooke J, de Matos Passos C, Chatenet M, Sescousse R, Budtova T, Berthon-Fabry S, Mosdale R, Maillard F (2011) Synthesis and properties of platinum nanocatalyst supported on cellulose-based carbon aerogel for applications in PEMFCs. J Electrochem Soc 158:B779–B789CrossRefGoogle Scholar
  14. 14.
    Rooke JC, Sescousse R, Budtova T, Berthon-Fabry S, Simon B, Chatenet M (2012) Cellulose-based nanostructured carbons for energy conversion and storage devices. In: Hulicova-Jurcakova D, Zhu J (eds) Rufford T. Green Carbon Materials Pan Stanford Publishing Pte Ltd, Singapore, pp 89–111Google Scholar
  15. 15.
    Fricke J (1988) Aerogels-highly tenuous solids with fascinating properties. J Non-Cryst Solids 100:169–173CrossRefGoogle Scholar
  16. 16.
    Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P (2006) Cellulose-based aerogels. Polymer 47:7636–7645CrossRefGoogle Scholar
  17. 17.
    Masmoudi Y, Rigacci A, Ilbizian P, Achard P (2006) Diffusion during the supercritical drying of silica gels. Dry Technol 24:1121–1125CrossRefGoogle Scholar
  18. 18.
    Liebner F, Haimer E, Wendland M, Neouze M-A, Schlufter K, Miethe P, Heinze T, Potthast A, Rosenau T (2010) Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels. Macromol Biosci 10:349–352CrossRefGoogle Scholar
  19. 19.
    Pääkko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499CrossRefGoogle Scholar
  20. 20.
    Granstrom M, Kettunen M, Jin H, Kolehmainen E, Kilpelainen I, Ikkala O (2011) Highly water repellent aerogels based on cellulose stearoyl esters. Polym Chem 2:1789–1795CrossRefGoogle Scholar
  21. 21.
    Korhonen JT, Kettunen M, Ras RHA, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. Appl Mater Interfaces 3:1813–1816CrossRefGoogle Scholar
  22. 22.
    Jin H, Kettunen M, Laiho A, Pynnoonen H, Paltakari J, Marmur A, Ikkala O, Ras RHA (2011) Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 27:1930–1934CrossRefGoogle Scholar
  23. 23.
    Zhou Y, Fu S, Pu Y, Pan S, Levit MV, Ragauskas AJ (2013) Freeze-casting of cellulose nanowhisker foams prepared from a water-dimethylsulfoxide (DMSO) binary mixture at low DMSO concentrations. RSC Adv 3:19272–19277CrossRefGoogle Scholar
  24. 24.
    Bisson A, Rigacci A, Lecomte D, Rodier E, Achard P (2003) Drying of silica gels to obtain aerogels: phenomenology and basic techniques. Dry Technol 21:593–628CrossRefGoogle Scholar
  25. 25.
    Deshpande R, Hua D, Smith D, Brinker CJ (1992) Drying of silica gels to obtain aerogels: phenomenology and basic techniques. J Non-Cryst Solids 144:32–34CrossRefGoogle Scholar
  26. 26.
    Schwertfeger F, Frank D, Schmidt M (1998) Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J Non-Cryst Solids 225:24–29CrossRefGoogle Scholar
  27. 27.
    Bisson A, Rodier E, Rigacci A, Lecomte D, Achard P (2004) Study of evaporative drying of treated silica gels. J Non-Cryst Solids 350:230–237CrossRefGoogle Scholar
  28. 28.
    Svensson A, Larsson PT, Salazar-Alvarez G, Wågberg L (2013) Preparation of dry ultra-porous cellulosic fibres: characterization and possible initial uses. Carbohydr Polym 92:775–783CrossRefGoogle Scholar
  29. 29.
    Köhnke T, Lund K, Brelid H, Westman G (2010) Kraft pulp hornification: a closer look at the preventive effect gained by glucuronoxylan adsorption. Carbohydr Polym 81:226–233CrossRefGoogle Scholar
  30. 30.
    Tejado A, Chen WC, Alam MN, van de Ven TGM (2014) Superhydrophobic foam-like cellulose made of hydrophobized cellulose fibres. Cellulose 21:1735–1743Google Scholar
  31. 31.
    Sehaqui H, Zimmermann T, Tingaut P (2014) Hydrophobic cellulose nanopaper through a mild esterification procedure. Cellulose 21:367–382CrossRefGoogle Scholar
  32. 32.
    Cervin NT, Andersson L, Ng JBS, Olin P, Bergström L, Wågberg L (2013) Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose. Biomacromolecules 14:503–511CrossRefGoogle Scholar
  33. 33.
    Capron I, Cathala B (2013) Surfactant free high internal phase emulsion stabilized by cellulose nanocrystals. Biomacromolecules 14:291–296CrossRefGoogle Scholar
  34. 34.
    Camacho Gomez JA, Erler UW, Klemm D (1996) 4-methoxy substituted trityl groups in 6-O protection of cellulose: homogeneous synthesis, characterization, detritylation. Macromol Chem Phys 197:953–964CrossRefGoogle Scholar
  35. 35.
    Eide OK, Ystenes M, Støvneng JA, Eilertsen JL (2007) Investigation of ion pair formation in the triphenylmethyl chloride–trimethyl aluminium system, as a model for the activation of olefin polymerization catalyst. Vib Spectrosc 43:210–216CrossRefGoogle Scholar
  36. 36.
    Weston RE Jr, Tsukamoto A, Lichtin NN (1966) Infrared spectra and vibrational frequency assignment of triphenylcarbinol, triphenylmethyl chloride, triphenylmethyl fluoborate, and their 1-13C and φ-d5 analogs. Spectrochim Acta 22:433–453CrossRefGoogle Scholar
  37. 37.
    Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655CrossRefGoogle Scholar
  38. 38.
    Zhang L, Ruan D, Zhou J (2001) Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/urea aqueous solution. Ind Eng Chem Res 40:5923–5928CrossRefGoogle Scholar
  39. 39.
    Rudaz C (2013) Cellulose and pectin aerogels: towards their nano-structuration. Ph.D. Dissertation, MINES ParisTechGoogle Scholar
  40. 40.
    Ardizzone S, Dioguardi FS, Mussini T, Mussini PR, Rondinini S, Vercelli B, Vertova A (1999) Microcrystalline cellulose powders: structure, surface features and water sorption capability. Cellulose 6:57–69CrossRefGoogle Scholar
  41. 41.
    Xie Y, Hill CAS, Jalaludin Z (2011) The water vapour sorption behaviour of three celluloses: analysis using parallel exponential kinetics and interpretation using the Kelvin-Voigt viscoelastic model. Cellulose 18:517–530CrossRefGoogle Scholar
  42. 42.
    Kocherbitov S, Ulvenlund M, Kober K, Jarring T, Arnebrant T (2008) Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry. J Phys Chem B 112:3728–3734CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Georg Pour
    • 1
  • Christian Beauger
    • 2
  • Arnaud Rigacci
    • 2
  • Tatiana Budtova
    • 1
  1. 1.MINES ParisTech, PSL Research University, CEMEF - Centre de Mise en Forme des Matériaux, UMR CNRS 7635Sophia Antipolis CedexFrance
  2. 2.MINES ParisTech, PSL Research University, PERSEE - Centre Procédés, Energies Renouvelables et Systèmes EnergétiquesSophia Antipolis CedexFrance

Personalised recommendations