Journal of Materials Science

, Volume 50, Issue 12, pp 4387–4395 | Cite as

High-efficiency grafting of halloysite nanotubes by using π-conjugated polyfluorenes via “click” chemistry

Original Paper


New hybrid halloysite nanotubes (HNTs) were obtained by grafting conjugated polyfluorenes (PFs) onto the surface via “click” chemistry. The hybrid material can be dispersed in organic solvent such as dichloromethane, and exhibits intense blue emission peaked at 448 nm. The absorption and emission spectra of the HNTs show distinct bathochromic shifts compared to PFs, which can be attributed to the extended π-conjugation as a result of the cycloaddition of azide and alkyne groups. The changes of the spectra also show that the PFs were grafted onto the HNTs through chemical bonds. Thermal gravimetric analyzer data show one more significant result, the grafting degree of the HNTs is 150 %, which means that a high mass ratio of PF polymers was grafted onto the HNTs. Furthermore, characterizations by infrared, nuclear magnetic resonance, and X-ray photoelectron spectroscopy also support the conclusion. The combination of HNTs with conjugated polymers will lead to a new generation of donor–acceptor nanohybrid materials which are promising in application in photoelectric fields.


Triethoxysilane Azide Group Polyfluorenes TBAF Halloysite Nanotubes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Science Foundation of China (Grant Nos. 201274037, 21304029 and 21474026), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant no. 20121301120004), the Natural Science Foundation of Hebei Province (Grant No. B2013201117), the Project funded by China Postdoctoral Science Foundation (Grant No. 2014M551040), and the Foundation of Hebei Educational Committee (YQ2014025).

Supplementary material

10853_2015_8993_MOESM1_ESM.docx (13.9 mb)
Fig.S1-S7 show GPC elution curves of P2, 1H solid-state NMR spectra, and SEM micrograph of HNTs-P2. Supplementary material 1 (DOCX 14256 kb)


  1. 1.
    Dasgupta D, Shishmanova IK, Ruiz-Carretero A et al (2013) Patterned silver nanoparticles embedded in a nanoporous smectic liquid crystalline polymer network. J Am Chem Soc 135:10922–10925CrossRefGoogle Scholar
  2. 2.
    Opanasenko M, Parker WON, Shamzhy M et al (2014) Hierarchical hybrid organic-inorganic materials with tunable textural properties obtained using zeolitic-layered precursor. J Am Chem Soc 136:2511–2519CrossRefGoogle Scholar
  3. 3.
    Xia X, Chao D, Qi X et al (2013) Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties. Nano Lett 13:4562–4568CrossRefGoogle Scholar
  4. 4.
    Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57:1061–1105CrossRefGoogle Scholar
  5. 5.
    Lvov YM, Shchukin DG, Mohwald H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2:814–820CrossRefGoogle Scholar
  6. 6.
    Abdullayev E, Sakakibara K, Okamoto K, Wei W, Ariga K, Lvov Y (2011) Natural tubule clay template synthesis of silver nanorods for antibacterial composite coating. ACS Appl Mater Inter 3:4040–4046CrossRefGoogle Scholar
  7. 7.
    Fu XB, Ding Z, Zhang X et al (2014) Preparation of halloysite nanotube-supported gold nanocomposite for solvent-free oxidation of benzyl alcohol. Nanoscale Res Lett 9:282–285CrossRefGoogle Scholar
  8. 8.
    Li C, Li X, Duan X, Li G, Wang J (2014) Halloysite nanotube supported Ag nanoparticles heteroarchitectures as catalysts for polymerization of alkylsilanes to superhydrophobic silanol/siloxane composite microspheres. J Colloid Interface Sci 436:70–76CrossRefGoogle Scholar
  9. 9.
    Abdullayev E, Price R, Shchukin D, Lvov Y (2009) Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. ACS Appl Mater Interfaces 1:1437–1443CrossRefGoogle Scholar
  10. 10.
    Lu F, Gu L, Meziani MJ et al (2009) Advances in bioapplications of carbon nanotubes. Adv Mater 21:139–152CrossRefGoogle Scholar
  11. 11.
    Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA (2007) Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28:4880–4888CrossRefGoogle Scholar
  12. 12.
    Lun H, Ouyang J, Yang H (2014) Natural halloysite nanotubes modified as an aspirin carrier. RSC Adv 4:44197–44202CrossRefGoogle Scholar
  13. 13.
    Lee Y, Jung G-E, Cho SJ, Geckeler KE, Fuchs H (2013) Cellular interactions of doxorubicin-loaded DNA-modified halloysite nanotubes. Nanoscale 5:8577–8585CrossRefGoogle Scholar
  14. 14.
    Pan J, Yao H, Xu L et al (2011) Selective recognition of 2,4,6-trichlorophenol by molecularly imprinted polymers based on magnetic halloysite nanotubes composites. J Phy Chem C 115:5440–5449CrossRefGoogle Scholar
  15. 15.
    Kim SW, Kim T, Kim YS et al (2012) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50:3–33CrossRefGoogle Scholar
  16. 16.
    Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498–1525CrossRefGoogle Scholar
  17. 17.
    Li Z, Kulkarni SA, Boix PP et al (2014) Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8:6797–6804CrossRefGoogle Scholar
  18. 18.
    Schnorr JM, Swager TM (2011) Emerging applications of carbon nanotubes. Chem Mater 23:646–657CrossRefGoogle Scholar
  19. 19.
    Eder D (2010) Carbon nanotube-inorganic hybrids. Chem Rev 110:1348–1385CrossRefGoogle Scholar
  20. 20.
    Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366–5397CrossRefGoogle Scholar
  21. 21.
    Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867CrossRefGoogle Scholar
  22. 22.
    Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRefGoogle Scholar
  23. 23.
    Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574–582Google Scholar
  24. 24.
    Rawtani D, Agrawal YK (2012) Multifarious application of holloysite nanotubes: a review. Rev Adv Mater Sci 30:282–295Google Scholar
  25. 25.
    Yang S, Liu Z, Jiao Y, Liu Y, Ji C, Zhang Y (2014) New insight into PEO modified inner surface of HNTs and its nano-confinement within nanotube. J Mater Sci 49:4270–4278. doi: 10.1007/s10853-014-8122-6 CrossRefGoogle Scholar
  26. 26.
    Alhuthali A, Low IM (2013) Water absorption, mechanical, and thermal properties of halloysite nanotube reinforced vinyl-ester nanocomposites. J Mater Sci 48:4260–4273. doi: 10.1007/s10853-013-7240-x CrossRefGoogle Scholar
  27. 27.
    Yah WO, Xu H, Soejima H, Ma W, Lvov Y, Takahara A (2012) Biomimetic dopamine derivative for selective polymer modification of halloysite nanotube lumen. J Am Chem Soc 134:12134–12137CrossRefGoogle Scholar
  28. 28.
    Yuan P, Southon PD, Liu Z et al (2008) Functionalization of halloysite clay nanotubes by grafting with gamma-aminopropyltriethoxysilane. J Phy Chem C 112:15742–15751CrossRefGoogle Scholar
  29. 29.
    Cai N, Dai Q, Wang Z, Luo X, Xue Y, Yu F (2015) Toughening of electrospun poly(l-lactic acid) nanofiber scaffolds with unidirectionally aligned halloysite nanotubes. J Mater Sci 50:1435–1445. doi: 10.1007/s10853-014-8703-4 CrossRefGoogle Scholar
  30. 30.
    Cavallaro G, Lazzara G, Milioto S (2011) Dispersions of nanoclays of different shapes into aqueous and solid biopolymeric matrices. Extended physicochemical study. Langmuir 27:1158–1167CrossRefGoogle Scholar
  31. 31.
    Cavallaro G, Lazzara G, Milioto S (2012) Exploiting the colloidal stability and solubilization ability of clay nanotubes/ionic surfactant hybrid nanomaterials. J Phys Chem C 116:21932–21938CrossRefGoogle Scholar
  32. 32.
    Massaro M, Riela S, Lo Meo P et al (2014) Functionalized halloysite multivalent glycocluster as a new drug delivery system. J Mater Chem B 2:7732–7738CrossRefGoogle Scholar
  33. 33.
    Shchukin DG, Sukhorukov GB, Price RR, Lvov YM (2005) Halloysite nanotubes as biomimetic nanoreactors. Small 1:510–513CrossRefGoogle Scholar
  34. 34.
    Lvov Y, Abdullayev E (2013) Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog Polym Sci 38:1690–1719CrossRefGoogle Scholar
  35. 35.
    Yah WO, Takahara A, Lvov YM (2012) Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. J Am Chem Soc 134:1853–1859CrossRefGoogle Scholar
  36. 36.
    Riela S, Massaro M, Colletti CG et al (2014) Development and characterization of co-loaded curcumin/triazole-halloysite systems and evaluation of their potential anticancer activity. Int J Pharm 475:613–623CrossRefGoogle Scholar
  37. 37.
    Yiu HHP, Wright PA (2005) Enzymes supported on ordered mesoporous solids: a special case of an inorganic-organic hybrid. J Mater Chem 15:3690–3700CrossRefGoogle Scholar
  38. 38.
    Bruce IJ, Sen T (2005) Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir 21:7029–7035CrossRefGoogle Scholar
  39. 39.
    Beaupre S, Boudreault P-LT, Leclerc M (2010) Solar-energy production and energy-efficient lighting: photovoltaic devices and white-light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole), and poly(2,7-dibenzosilole) derivatives. Adv Mater 22:E6–E27CrossRefGoogle Scholar
  40. 40.
    Abbel R, Schenning APHJ, Meijer EW (2009) Fluorene-based materials and their supramolecular properties. J Polym Sci A 47:4215–4233CrossRefGoogle Scholar
  41. 41.
    Tolman CA, Seidel WC, Gerlach DH (1972) Triarylphosphine and ethylene complexes of zerovalent nickel, palladium, and platinum. J Am Chem Soc 94:2669–2676CrossRefGoogle Scholar
  42. 42.
    Luo Z, Song H, Feng X et al (2013) Liquid crystalline phase behavior and sol-gel transition in aqueous halloysite nanotube dispersions. Langmuir 29:12358–12366CrossRefGoogle Scholar
  43. 43.
    Wan C, Li M, Bai X, Zhang Y (2009) Synthesis and characterization of photoluminescent Eu(III) coordination halloysite nanotube-based nanohybrids. J Phys Chem C 113:16238–16246CrossRefGoogle Scholar
  44. 44.
    Denneval C, Moldovan O, Baudequin C et al (2013) Synthesis and photophysical properties of push-pull structures incorporating diazines as attracting part with a fluorene core. Eur J Org Chem 2013:5591–5602CrossRefGoogle Scholar
  45. 45.
    Sandee AJ, Williams CK, Evans NR et al (2004) Solution-processible conjugated electrophosphorescent polymers. J Am Chem Soc 126:7041–7048CrossRefGoogle Scholar
  46. 46.
    Houga C, Le Meins JF, Borsali R, Taton D, Gnanou Y (2007) Synthesis of ATRP-induced dextran-b-polystyrene diblock copolymers and preliminary investigation of their self-assembly in water. Chem Commun 29:3063–3065CrossRefGoogle Scholar
  47. 47.
    Mulvihill MJ, Rupert BL, He R, Hochbaum A, Arnold J, Yang P (2005) Synthesis of bifunctional polymer nanotubes from silicon nanowire templates via atom transfer radical polymerization. J Am Chem Soc 127:16040–16041CrossRefGoogle Scholar
  48. 48.
    Dax D, Xu C, Långvik O, Hemming J, Backman P, Willför S (2013) Synthesis of SET–LRP-induced galactoglucomannan-diblock copolymers. J Polym Sci A 51:5100–5110CrossRefGoogle Scholar
  49. 49.
    Binder WH, Sachsenhofer R (2007) ‘Click’ chemistry in polymer and materials science. Macromol Rapid Commun 28:15–54CrossRefGoogle Scholar
  50. 50.
    Moses JE, Moorhouse AD (2007) The growing applications of click chemistry. Chem Soc Rev 36:1249–1262CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Chemistry and Environmental ScienceHebei UniversityBaodingChina
  2. 2.Key Laboratory of Medical Chemistry and Molecular DiagnosisMinistry of EducationBaodingChina

Personalised recommendations