Journal of Materials Science

, Volume 50, Issue 12, pp 4280–4287 | Cite as

Dinonylphenyl end-capped poly(ethylene glycol)-b-polystyrene: synthesis and its unusual crystalline and self-assembly behaviors

  • Hong Li
  • Yijian Wu
  • Yong Hu
  • E. Bryan Coughlin
  • Yongming Zhang
Original Paper


Block copolymers, dinonylphenyl end-capped polyethylene glycol-b-polystyrene (DNPE-PEO-b-PSs) were synthesized in a one-step atom transfer radical polymerization (ATRP) of styrene. The PEO block in the DNPE-PEO-b-PS samples (volume fraction of PS: 66.8–93.2 %) was found to be amorphous, which contrasts with DNPE-PEO precursor, traditional methoxide end-capped polyethylene glycol-b-polystyrene (PEO-b-PS) and dinonylphenyl end-capped poly-(ethylene glycol)-b-poly(fluorinated methyl methacrylate)(DNPE-PEO-b-PFMAs). Meanwhile, DNPE-PEO-b-PSs display an intriguing self-assembly behavior in solution. Block copolymer particles with mesoporous internal structures are directly formed by self-assembly of DNPE-PEO-b-PS in tetrahydrofuran/water solutions. It is proposed that DNPE end group has an important effect on the crystallization of the block copolymers as well as their self-assembly behaviors in solution.


Block Copolymer Dynamic Light Scattering Atom Transfer Radical Polymerization Atom Transfer Radical Polymerization Diblock Copolymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge funding for this work provided by the “12th 5-year” National Key Technologies R&D Program of China (2011BAE08B00), the Shanghai Natural Science Foundation (15ZR1422100), and State Key Laboratory of Hollow Fiber Membrane Materials and Processes (Tianjin Polytechnic University), Tianjin 300387, P. R. China. The authors thank the Instrumental Analysis Center, Shanghai Jiao Tong University for the SEM characterization.

Supplementary material

10853_2015_8980_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1544 kb)


  1. 1.
    Bates FS, Fredrickson GH (1999) Block copolymers—designer soft materials. Phys Today 52:32–38CrossRefGoogle Scholar
  2. 2.
    Mai Y, Eisenberg A (2012) Self-assembly of block copolymers. Chem Soc Rev 41:5969–5985CrossRefGoogle Scholar
  3. 3.
    Bhargava P, Zheng JX, Li P, Quirk RP, Harris FW, Cheng SZD (2006) Self-assembled polystyrene-block-poly(ethylene oxide) micelle morphologies in solution. Macromolecules 39:4880–4888CrossRefGoogle Scholar
  4. 4.
    Jain S, Bates FS (2003) On the origins of morphological complexity in block copolymer surfactants. Science 300:460–464CrossRefGoogle Scholar
  5. 5.
    Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297:967–973CrossRefGoogle Scholar
  6. 6.
    Zhong S, Cui H, Chen Z, Wooley KL, Pochan DJ (2008) Helix self-assembly through the coiling of cylindrical micelles. Soft Matter 4:90–93CrossRefGoogle Scholar
  7. 7.
    Yu H, Jiang W (2009) Effect of shear flow on the formation of ring-shaped ABA amphiphilic triblock copolymer micelles. Macromolecules 42:3399–3404CrossRefGoogle Scholar
  8. 8.
    Chen Z, Cui H, Hales K et al (2005) Unique toroidal morphology from composition and sequence control of triblock copolymers. J Am Chem Soc 127:8592–8593CrossRefGoogle Scholar
  9. 9.
    Yamamoto T (2014) Molecular Dynamics of Crystallization in a Helical Polymer Isotactic Polypropylene from the Oriented Amorphous State. Macromolecules 47:3192–3202CrossRefGoogle Scholar
  10. 10.
    Qin S, Li H, Yuan W, Zhang Y (2011) Hierarchical self-assembly of fluorine-containing diblock copolymer: from onion-like nanospheres to superstructured microspheres. Polymer 52:1191CrossRefGoogle Scholar
  11. 11.
    Qin S, Li H, Yuan WZ, Zhang Y (2012) Fluorine-containing block copolymer particles with surface and internal hierarchical microphase separation structures. Soft Matter 8:2471–2476CrossRefGoogle Scholar
  12. 12.
    Deng R, Liang F, Li W et al (2013) Self assembly: shaping functional nano-objects by 3D confined supramolecular assembly (small 24/2013). Small 9:4098–4098CrossRefGoogle Scholar
  13. 13.
    McKenzie BE, Nudelman F, Bomans PHH, Holder SJ, Sommerdijk NAJM (2010) Temperature-responsive nanospheres with bicontinuous internal structures from a semicrystalline amphiphilic block copolymer. J Am Chem Soc 132:10256–10259CrossRefGoogle Scholar
  14. 14.
    Hales K, Chen Z, Wooley KL, Pochan DJ (2008) Nanoparticles with tunable internal structure from triblock copolymers of PAA-b-PMA-b-PS. Nano Lett 8:2023–2026CrossRefGoogle Scholar
  15. 15.
    Deng R, Liu S, Li J, Liao Y, Tao J, Zhu J (2012) Mesoporous block copolymer nanoparticles with tailored structures by hydrogen-bonding-assisted self-assembly. Adv Mater 24:1889–1893CrossRefGoogle Scholar
  16. 16.
    Fan H, Jin Z (2014) Selective swelling of block copolymer nanoparticles: size, nanostructure, and composition. Macromolecules 47:2674–2681CrossRefGoogle Scholar
  17. 17.
    Yang J, Lee C-H, Ko H-J et al (2007) Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed 46:8836–8839CrossRefGoogle Scholar
  18. 18.
    Lu Z, Liu G, Phillips H, Hill JM, Chang J, Kydd RA (2001) Palladium nanoparticle catalyst prepared in poly(acrylic acid)-lined channels of diblock copolymer microspheres. Nano Lett 1:683–687CrossRefGoogle Scholar
  19. 19.
    Dorin RM, Sai H, Wiesner U (2013) Hierarchically porous materials from block copolymers. Chem Mater 26:339–347CrossRefGoogle Scholar
  20. 20.
    Jackson EA, Hillmyer MA (2010) Nanoporous membranes derived from block copolymers: from drug delivery to water filtration. ACS Nano 4:3548–3553CrossRefGoogle Scholar
  21. 21.
    Zhu L, Cheng SZD, Calhoun BH et al (2001) Phase structures and morphologies determined by self-organization, vitrification, and crystallization: confined crystallization in an ordered lamellar phase of PEO-b-PS diblock copolymer. Polymer 42:5829–5839CrossRefGoogle Scholar
  22. 22.
    Zhu L, Huang P, Cheng SZD et al (2001) Dislocation-controlled perforated layer phase in a PEO-PS diblock copolymer. Phys Rev Lett 86:6030–6033CrossRefGoogle Scholar
  23. 23.
    Kim KT, Zhu J, Meeuwissen SA et al (2010) Polymersome stomatocytes: controlled shape transformation in polymer vesicles. J Am Chem Soc 132:12522–12524CrossRefGoogle Scholar
  24. 24.
    Yu K, Eisenberg A (1998) Bilayer morphologies of self-assembled crew-cut aggregates of amphiphilic PS-b-PEO diblock copolymers in solution. Macromolecules 31:3509–3518CrossRefGoogle Scholar
  25. 25.
    Kyeremateng SO, Amado E, Blume A, Kressler J (2008) Synthesis of ABC and CABAC triphilic block copolymers by ATRP combined with ‘click’ chemistry. Macromol Rapid Commun 29:1140–1146CrossRefGoogle Scholar
  26. 26.
    Kyeremateng SO, Busse K, Kohlbrecher J, Jr Kressler (2011) Synthesis and self-organization of poly(propylene oxide)-based amphiphilic and triphilic block copolymers. Macromolecules 44:583–593CrossRefGoogle Scholar
  27. 27.
    Skrabania K, Laschewsky A, Hv Berlepsch, Böttcher C (2009) Synthesis and micellar self-assembly of ternary hydrophilic–lipophilic–fluorophilic block copolymers with a linear PEO chain. Langmuir 25:7594–7601CrossRefGoogle Scholar
  28. 28.
    Marsat J-N, Heydenreich M, Kleinpeter E, Berlepsch HV, Böttcher C, Laschewsky A (2011) Self-assembly into multicompartment micelles and selective solubilization by hydrophilic–lipophilic–fluorophilic block copolymers. Macromolecules 44:2092–2105CrossRefGoogle Scholar
  29. 29.
    Skrabania K, Hv Berlepsch, Böttcher C, Laschewsky A (2009) Synthesis of ternary, hydrophilic–lipophilic–fluorophilic block copolymers by consecutive RAFT polymerizations and their self-assembly into multicompartment micelles. Macromolecules 43:271–281CrossRefGoogle Scholar
  30. 30.
    Berlepsch HV, Bottcher C, Skrabania K, Laschewsky A (2009) Complex domain architecture of multicompartment micelles from a linear ABC triblock copolymer revealed by cryogenic electron tomography. Chem Commun 17:2290–2292CrossRefGoogle Scholar
  31. 31.
    Du J, Willcock H, Patterson JP, Portman I, O’Reilly RK (2011) Self-assembly of hydrophilic homopolymers: a matter of RAFT end groups. Small 7:2070–2080CrossRefGoogle Scholar
  32. 32.
    Zhong XF, Eisenberg A (1994) Aggregation and critical micellization behavior of carboxylate-terminated monochelic polystyrene. Macromolecules 27:1751–1758CrossRefGoogle Scholar
  33. 33.
    Yu X, Zhong S, Li X et al (2010) A giant surfactant of polystyrene-(carboxylic acid-functionalized polyhedral oligomeric silsesquioxane) amphiphile with highly stretched polystyrene tails in micellar assemblies. J Am Chem Soc 132:16741–16744CrossRefGoogle Scholar
  34. 34.
    Changez M, Kang N-G, Lee CH, Lee J-S (2010) Reversible and pH-sensitive vesicles from amphiphilic homopolymer poly(2-(4-vinylphenyl)pyridine). Small 6:63–68CrossRefGoogle Scholar
  35. 35.
    Furyk S, Zhang Y, Ortiz-Acosta D, Cremer PS, Bergbreiter DE (2006) Effects of end group polarity and molecular weight on the lower critical solution temperature of poly(N-isopropylacrylamide). J Polym Sci 44:1492–1501CrossRefGoogle Scholar
  36. 36.
    Li H, Gu W, Li L, Zhang Y, Russell TP, Coughlin EB (2013) Synthesis of semicrystalline/fluorinated side-chain crystalline block copolymers and their bulk and thin film nanoordering. Macromolecules 46:3737–3745CrossRefGoogle Scholar
  37. 37.
    Takahashi Y, Tadokoro H (1973) Structural studies of polyethers, (–(CH2)m–O–)nX. Crystal structure of poly(ethylene oxide). Macromolecules 6:672–675CrossRefGoogle Scholar
  38. 38.
    Takahashi Y, Sumita I, Tadokoro H (1973) Structural studies of polyethers IX. Planar zigzag modification of poly(ethylene oxide). J Polym Sci 11:2113–2122Google Scholar
  39. 39.
    Cheng SZD, Wu SS, Chen J et al (1993) Isothermal thickening and thinning processes in low-molecular-weight poly(ethylene oxide) fractions crystallized from the melt 4. End-group dependence. Macromolecules 26:5105–5117CrossRefGoogle Scholar
  40. 40.
    Kovacs AJ, Straupe C (1980) Isothermal growth, thickening and melting of poly(ethylene-oxide) single crystals in the bulk: III. Bilayer crystals and the effect of chain ends. J Cryst Growth 48:210–226CrossRefGoogle Scholar
  41. 41.
    Li S, Chen P, Zhang L, Liang H (2011) Geometric frustration phases of diblock copolymers in nanoparticles. Langmuir 27:5081–5089CrossRefGoogle Scholar
  42. 42.
    Singh V, Khullar P, Dave PN, Kaura A, Bakshi MS, Kaur G (2014) pH and thermo-responsive tetronic micelles for the synthesis of gold nanoparticles: effect of physiochemical aspects of tetronics. PCCP 16:4728–4739CrossRefGoogle Scholar
  43. 43.
    Khullar P, Singh V, Mahal A, Kumar H, Kaur G, Bakshi MS (2013) Block copolymer micelles as nanoreactors for self-assembled morphologies of gold nanoparticles. J Phys Chem B 117:3028–3039CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of Polymer Science and EngineeringUniversity of Massachusetts AmherstAmherstUSA

Personalised recommendations