Advertisement

Journal of Materials Science

, Volume 50, Issue 10, pp 3727–3739 | Cite as

Reduction of the repulsive interaction as origin of helium trapping inside a monovacancy in BCC metals

  • C. González
  • M. A. Cerdeira
  • S. L. Palacios
  • R. Iglesias
Original Paper

Abstract

We present the energetic, structural and electronic properties that explain the accumulation of He inside a single vacancy in both a BCC W and a BCC Nb crystals. Using density functional theory, we have obtained the most stable structures for an increasing number of He atoms within the monovacancy, with and without the presence of van der Waals (vdW) interactions. Our results show that the maximum number of He atoms that can be placed in the monovacancy is nine and suggest that the vdW interactions should be taken into account for higher He concentrations produced in bigger n-vacancies. The analysis of the density of states and the He–metal interaction reveals a reduction of the repulsion as the origin of He trapping inside the metallic vacancy. The formation energy grows almost linearly with the number of He atoms included, showing a strong dependence on the bulk modulus, while the binding energy presents a more complex behaviour. Finally, the deformations of the first (1NN), second (2NN) and third (3NN) nearest neighbour atomic distances to the vacancy change in different ways. The maximum deformation obtained (around 0.5 Å) is found with precisely nine He atoms inside the vacancy, just before the bubble collapses.

Keywords

Density Functional Theory Bulk Modulus Formation Energy Helium Atom Atomic Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been supported by the FP7 project RADINTERFACES and the Spanish MAT2012-38541-C02-01 from the Ministry of Economy and Competitiveness. The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the Red Espaola de Supercomputacin (RES) Project FI-2014-1-0008 and the European PRACE-3IP Project (FP7 RI-312763) resource Fionn based in Ireland at ICHEC. Angel Gutiérrez at the UNIOVI Scientific Modelling Cluster is gratefully acknowledged for technical help and CPU time.

References

  1. 1.
    Demkowicz MJ, Misra A, Caro AJ (2012) The role of interface structure in controlling high helium concentrations. Curr Opin Solid State Mater Sci 16:101–108CrossRefGoogle Scholar
  2. 2.
    Höchbauer T, Misra A, Hattar K, Hoagland RG (2005) Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites. J Appl Phys 98:123516–123517CrossRefGoogle Scholar
  3. 3.
    Misra A, Demkowicz MJ, Zhang X, Hoagland RG (2007) The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59:62–65CrossRefGoogle Scholar
  4. 4.
    Hattar K, Demkowicz MJ, Misra A, Robertson IM, Hoagland RG (2008) Arrest of He bubble growth in CuNb multilayer nanocomposites. Scripta Mater 58:541–544CrossRefGoogle Scholar
  5. 5.
    Gao Y, Yang T, Xue J, Yan S, Zhou S, Wanga Y, Kwok DTK, Chu PK, Zhang Y (2011) Radiation tolerance of Cu/W multilayered nanocomposites. J Nucl Mater 413:11–15CrossRefGoogle Scholar
  6. 6.
    Demkowicz MJ, Bellon P, Wirth BD (2010) Atomic-scale design of radiation-tolerant nanocomposites. MRS Bull 35:1–7CrossRefGoogle Scholar
  7. 7.
    Zinkle SJ, Ghoniem NM (2011) Prospects for accelerated development of high performance structural materials. J Nucl Mater 417:2–8CrossRefGoogle Scholar
  8. 8.
    Brodrick J, Hepburn DJ, Ackland GJ (2014) Mechanism for radiation damage resistance in yttrium oxide dispersion strengthened steels. J Nucl Mater 445:291–297CrossRefGoogle Scholar
  9. 9.
    Was GS (2007) Fundamentals of radiation materials science. Springer, New York 191Google Scholar
  10. 10.
    González C, Fernández-Pello D, Cerdeira MA, Palacios SL, Iglesias R (2014) Helium bubble clustering in copper from first principles. Modell Simul Mater Sci Eng 22:035013–035019CrossRefGoogle Scholar
  11. 11.
    Becquart CS, Domain C (2007) Ab initio calculations about intrinsic point defects and He in W. Nucl Instrum Meth B 255:23–26CrossRefGoogle Scholar
  12. 12.
    Lhuillier PE, Belhabib T, Desgardin P, Courtois B, Sauvage T, Barthe MF, Thomann AL, Brault P, Tessier Y (2013) Helium retention and early stages of helium-vacancy complexes formation in low energy helium-implanted tungsten. J Nucl Mater 433:305–313CrossRefGoogle Scholar
  13. 13.
    Abd El Keriem MS, van der Werf DP, Pleiter F (1993) Helium-vacancy interaction in tungsten. Phys Rev B 47:14771–14777CrossRefGoogle Scholar
  14. 14.
    Henriksson KOE, Nordlund K, Keinonen J (2006) Molecular dynamics simulations of helium cluster formation in tungsten. Nucl Instrum Meth B 244:377–391CrossRefGoogle Scholar
  15. 15.
    Li XC, Shu X, Liu YN, Yu Y, Gao F, Lu GH (2012) Analytical WHe and HHe interatomic potentials for a WHHe system. J Nucl Mater 426:31–37CrossRefGoogle Scholar
  16. 16.
    Zhou YL, Wang J, Hou Q, Deng AH (2014) Molecular dynamics simulations of the diffusion and coalescence of helium in tungsten. J Nucl Mater 446:49–55CrossRefGoogle Scholar
  17. 17.
    Becquart CS, Barthe MF, De Backer A (2011) Modelling radiation damage and He production in tungsten. Phys Scr T 145:014048CrossRefGoogle Scholar
  18. 18.
    Takayama A, Ito AM, Saito S, Ohno N, Nakamura H (2013) First-principles investigation on trapping of multiple helium atoms within a tungsten monovacancy. Jpn J Appl Phys 52:01AL03–01AC05CrossRefGoogle Scholar
  19. 19.
    Seletskaia T, Osetsky Y, Stoller RE, Stocks GM (2008) First-principles theory of the energetics of He defects in bcc transition metals. Phys Rev B 78:134103–134111CrossRefGoogle Scholar
  20. 20.
    Kashinath A, Demkowicz MJ (2011) A predictive interatomic potential for He in Cu and Nb. Model Simul Mater Sci 19:035007CrossRefGoogle Scholar
  21. 21.
    Dunn AY, McPhie MG, Capolungo L, Martínez E, Cherkaoui M (2013) A rate theory study of helium bubble formation and retention in CuNb nanocomposites. J Nucl Mater 435:141–152CrossRefGoogle Scholar
  22. 22.
    Björkman T, Gulans A, Krasheninnikov AV, Nieminen RM (2012) Are we van der Waals ready? J Phys 24:424218Google Scholar
  23. 23.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:R558–R561CrossRefGoogle Scholar
  24. 24.
    Kresse G, Furthmuller JJ (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  25. 25.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  26. 26.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  27. 27.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  28. 28.
    James AM, Lord MP (1992) Macmillan’s chemical and physical data. Macmillan, BasingstokeGoogle Scholar
  29. 29.
    Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621CrossRefGoogle Scholar
  30. 30.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  31. 31.
    Becquart CS, Domain C (2009) An object Kinetic Monte Carlo Simulation of the dynamics of helium and point defects in tungsten. J Nucl Mater 385:223–227CrossRefGoogle Scholar
  32. 32.
    Klaver TPC, Hepburn DJ, Ackland GJ (2012) Defect and solute properties in dilute Fe–Cr–Ni austenitic alloys from first principles. Phys Rev B 85:174111CrossRefGoogle Scholar
  33. 33.
    Juslin N, Wirth BD (2013) Interatomic potentials for simulation of He bubble formation in W. J Nucl Mater 432:61–66CrossRefGoogle Scholar
  34. 34.
    Derlet PM, Nguyen-Manh D, Dudarev SL (2007) Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals. Phys Rev B 76:054107CrossRefGoogle Scholar
  35. 35.
    González C, Iglesias R (2014) Migration mechanisms of helium in copper and tungsten. J Mater Sci 49:8127–8139. doi: 10.1007/s10853-014-8522-7 CrossRefGoogle Scholar
  36. 36.
    Söderlind P, Yang LH, Moriarty JA, Wills JM (2000) First-principles formation energies of monovacancies in bcc transition metals. Phys Rev B 61:2579–2586CrossRefGoogle Scholar
  37. 37.
    Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71:809–824CrossRefGoogle Scholar
  38. 38.
    Satta A, Willaime F, de Gironcoli S (1998) Vacancy self-diffusion parameters in tungsten: finite electron-temperature LDA calculations. Phys Rev B 57:11184–11192CrossRefGoogle Scholar
  39. 39.
    Seletskaia T, Osetsky Y, Stoller RE, Stocks GM (2005) Magnetic interactions influence the properties of helium defects in iron. Phys Rev Lett 94:046403CrossRefGoogle Scholar
  40. 40.
    Becquart CS, Domain C, Sarkar U, DeBacker A, Hou M (2010) Microstructural evolution of irradiated tungsten: Ab initio parameterisation of an OKMC model. J Nucl Mater 403:7588CrossRefGoogle Scholar
  41. 41.
    Valles G, González C, Martín-Bragado I, Iglesias R, Perlado JM, Rivera A (2015) The influence of high grain boundary density on helium retention in tungsten. J Nucl Mater 457:80–87CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad de OviedoOviedoSpain
  2. 2.Instituto de Fusion NuclearUniversidad Politécnica de MadridMadridSpain

Personalised recommendations