Journal of Materials Science

, Volume 50, Issue 10, pp 3686–3696 | Cite as

Effect of crystallization conditions on the physical properties of a two-layer glassine paper/polyhydroxybutyrate structure

Original Paper


Polyhydroxybutyrate (PHB) is a hydrophobic, biodegradable biopolymer, which can be a potential substitute for currently used synthesized polymers in the packaging industry. However, its utility is often limited by its brittleness and poor mechanical properties, mainly because of its through-thickness fractures. In this study, we laminate and crystallize PHB on glassine paper by hot-pressing and tune the crystallization conditions to minimize cracking. Glassine paper is impermeable to PHB granules and allows the formation of a distinguishable bilayer of PHB. It was found that glassine paper serves as a soft substrate, which increases the number of nucleation sites of the spherulites and prevents growth of the cracks in the neighboring PHB layer. Quenching the films to the crystallization temperature was found to minimize cracking enough to reduce the water vapor transmission rate to \(15\)\(25\,{\mathrm{g}}\,{\mathrm{m}}^{-2}\,{\mathrm{day}}^{-1}\), irrespective of the crystallization temperature; however, the mechanical properties improved only at the crystallization temperatures below 77 °C, perhaps due to the local stress in the existing cracks at higher crystallization temperatures. The optimum crystallization conditions were found to be quenching the film in an ice bath and crystallization at room temperature, by which we obtained mechanical strength and Young’s modulus of \(80\,\text {MPa}\) and \(2.5\,\text {GPa}\), respectively, and a water vapor transmission rate of \(20\,\text {g}\,\text {m}^{-2}\,\text {day}^{-1}\). Our results suggest a simple and cost-effective method to produce PHB films with enhanced mechanical and barrier properties.


Crystallization Temperature Cold Crystallization Water Vapor Transmission Rate High Crystallization Temperature Water Vapor Barrier Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial supports from an Industrial Research Chair funded by FPInnovations and NSERC and from NSERCs Innovative Green Wood Fibre Products Network are gratefully acknowledged.

Supplementary material

10853_2015_8929_MOESM1_ESM.pdf (930 kb)
Supplementary material 1 (PDF 930 kb)


  1. 1.
    Abe H, Matsubara I, Doi Y (1995) Physical properties and enzymatic degradability of polymer blends of bacterial poly[(r)-3-hydroxybutyrate] and poly[(r, s)-3-hydroxybutyrate] stereoisomers. Macromolecules 28(4):844–853CrossRefGoogle Scholar
  2. 2.
    Alamo RG, Mandelkern L (1991) Crystallization kinetics of random ethylene copolymers. Macromolecules 24:6480–6493CrossRefGoogle Scholar
  3. 3.
    An Y, Dong L, Mo Z, Liu T, Feng Z (1998) Nonisothermal crystallization kinetics of poly (\(\beta \)-hydroxybutyrate). J Polym Sci Part B 36:1305–1312CrossRefGoogle Scholar
  4. 4.
    Avrami M (1940) Kinetics of phase change. ii transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224CrossRefGoogle Scholar
  5. 5.
    Barham PJ (1984) Nucleation behaviour of poly-3-hydroxybutyrate. J Mater Sci 19(12):3826–3834CrossRefGoogle Scholar
  6. 6.
    Barham PJ, Keller A (1986) The relationship between microstructure and mode of fracture in polyhydroxybutyrate. J Polym Sci 24(1):69–77CrossRefGoogle Scholar
  7. 7.
    Barham PJ, Keller A, Otun EL, Holmes PA (1984) Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci 19(9):2781–2794CrossRefGoogle Scholar
  8. 8.
    Barham PJ, Barker P, Organ SJ (1992) Physical properties of poly(hydroxybutyrate) and copolymers of hydroxybutyrate and hydroxyvalerate. FEMS Microbiol Rev 103(2–4):289–298CrossRefGoogle Scholar
  9. 9.
    Barud HS, L SJ, Santos DB, Crespi MS, Ribeiro CA, Messaddeq Y, Ribeiro SJL (2011) Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes. Carbohydr Polym 83(3):1279–1284CrossRefGoogle Scholar
  10. 10.
    Bessel TJ, Hull D, Shortall JB (1974) The effect of polymerization conditions and crystallinity on the mechanical properties and fracture of spherulitic nylon 6. J Mater Sci 10(7):1127–1136CrossRefGoogle Scholar
  11. 11.
    Bloembergen S, Holden DA, Hamer GK, Bluhm TL, Marchessault RH (1986) Studies of composition and crystallinity of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules 19(11):2865–2871CrossRefGoogle Scholar
  12. 12.
    Bourbonnais R, Marchessault RH (2010) Application of polyhydroxyalkanoate granules for sizing of paper. Biomacromolecules 11(4):989–993CrossRefGoogle Scholar
  13. 13.
    Corre Y, Bruzaud S, Audic J, Grohens Y (2012) Morphology and functional properties of commercial polyhydroxyalkanoates: a comprehensive and comparative study. Polym Test 31(2):226–235CrossRefGoogle Scholar
  14. 14.
    Cyras VP, Soledad CM, Mauri AN, Analia V (2007) Biodegradable double-layer films based on biological resources: polyhydroxybutyrate and cellulose. J Appl Polym Sci 106(2):749–756CrossRefGoogle Scholar
  15. 15.
    Cyras VP, Soledad CM, Analia V (2009) Biocomposites based on renewable resource: acetylated and non acetylated cellulose cardboard coated with polyhydroxybutyrate. Polymer 50(26):6274–6280CrossRefGoogle Scholar
  16. 16.
    de Koning GJM, Scheeren AHC, Lemstra PJ, Peeters M, Reynaers H (1994) Crystallization phenomena in bacterial poly[(r)-3-hydroxybutyrate]: 3. toughening via texture changes. Polymer 35(21):4598–4605CrossRefGoogle Scholar
  17. 17.
    Diez-Pascual AM, Diez-Vicente AL (2014) Zno-reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging. ACS Appl Mater Interfaces 6(12):9822–9834CrossRefGoogle Scholar
  18. 18.
    El-Hadi A, Schnabel R, Straube E, Muller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) phas and their blends. Polym Test 21(6):665–675CrossRefGoogle Scholar
  19. 19.
    Follain N, Chappey C, Dargent E, Chivrac F, Cretois R, Marais S (2014) Structure and barrier properties of biodegradable polyhydroxyalkanoate films. J Phys Chem C 118(12):6165–6177CrossRefGoogle Scholar
  20. 20.
    Galeski A, Piorkowska E (1983a) Localized volume deficiencies as an effect of spherulite growth. i. the two-dimensional case. J Polym Sci 21(8):1299–1312Google Scholar
  21. 21.
    Galeski A, Piorkowska E (1983b) Localized volume deficiencies as an effect of spherulite growth. ii. the three-dimensional case. J Polym Sci 21(8):1313–1322Google Scholar
  22. 22.
    Gozzano M, Tomasi G, Scandola M (1997) X-ray investigation on melt-crystallized bacterial poly(3-hydroxybutyrate). Macromol Chem Phys 198(1):71–80CrossRefGoogle Scholar
  23. 23.
    Gozzano M, Focarete ML, Rieke LC, Scandola M (2000) Bacterial poly(3-hydroxybutyrate): an optical microscopy and microfocus X-ray diffraction study. Biomacromolecules 1(4):604–608CrossRefGoogle Scholar
  24. 24.
    Gumel AM, Annuar MSM, Chisti Y (2013) Recent advances in the production, recovery and applications of polyhydroxyalkanoates. J Polym Environ 21(2):580–605CrossRefGoogle Scholar
  25. 25.
    Hobbs JK, Barham PJ (1998a) The fracture of poly(hydroxybutyrate) part ii fracture mechanics study after annealing. J Mater Sci 33(10):2515–2518. doi: 10.1023/A:1004336715288 CrossRefGoogle Scholar
  26. 26.
    Hobbs JK, Barham PJ (1998b) The fracture of poly(hydroxybutyrate) part iii fracture morphology in thin films and bulk systems. J Mater Sci 34(34):4831–4844. doi: 10.1023/A:1004659726586 Google Scholar
  27. 27.
    Hobbs JK, McMaster TJ, Miles MJ, Barham PJ (1996) Cracking in spherulites of poly(hydroxybutyrate). Polymer 37(15):3241–3246CrossRefGoogle Scholar
  28. 28.
    Iordanskii A, Kamaev PP, Hanggi UJ (2000) Modification via preparation for poly(3-hydroxybutyrate) films: water-transport phenomena and sorption. J Appl Polym Sci 76(4):475–480CrossRefGoogle Scholar
  29. 29.
    Jacquel N, Lo C, Wu H (2007) Solubility of polyhydroxyalkanoates by experiment and thermodynamic correlations. J Am Inst Chem Eng 53(10):2704–2714CrossRefGoogle Scholar
  30. 30.
    Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764CrossRefGoogle Scholar
  31. 31.
    Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6(1):1–8CrossRefGoogle Scholar
  32. 32.
    Lin Y, Fan Y (2012) Substrate effect on the crystallization of isotactic polypropylene. J Appl Polym Sci 125(1):233–245CrossRefGoogle Scholar
  33. 33.
    Martinez-Salazar J, Sanchez-Cuesta M, Barham PJ, Keller A (1989) Thermal expansion and spherulite cracking in 3-hydroxybutyrate/3-hydroxyvalerate copolymers. J Mater Sci Lett 8(17):490–492CrossRefGoogle Scholar
  34. 34.
    Miguel O, Iruin JJ (1999) Water transport properties in poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biopolymers. J Appl Polym Sci 73(4):455–468CrossRefGoogle Scholar
  35. 35.
    Miguel O, Fernandez-Berridi MJ, Iruin JJ (1997) Survey on transport properties of liquids, vapors, and gases in biodegradable poly(3-hydroxybutyrate) (phb). J Appl Polym Sci 64(9):1849–1859CrossRefGoogle Scholar
  36. 36.
    Miguel O, Egiburu JJ, Iruin JJ (2001) Blends of bacterial poly(3-hydroxybutyrate) with synthetic poly(3-hydroxybutyrate) and poly(epichlorohydrin): transport properties of carbon dioxide and water vapour. Polymer 42(3):953–962CrossRefGoogle Scholar
  37. 37.
    Nurkhamidah S, Woo EM (2012) Correlation of crack patterns and ring bands in spherulites of low molecular weight poly(l-lactic acid). Colloid Polym Sci 290(3):275–288CrossRefGoogle Scholar
  38. 38.
    Organ SJ, Barham PJ (1991) Nucleation, growth and morphology of poly(hydroxybutyrate) and its copolymers. J Mater Sci 26(5):1368–1374. doi: 10.1007/BF00544479 CrossRefGoogle Scholar
  39. 39.
    Owen AJ, Heinzel J, Skrbic Z, Divjakovic V (1992) Crystallization and melting behaviour of phb and phb/hv copolymer. Polymer 33(7):1563–1567CrossRefGoogle Scholar
  40. 40.
    Parra DF, Fusaro J, Gaboardi F, Rosa DS (2006) Influence of poly (ethylene glycol) on the thermal, mechanical, morphological, physicalechemical and biodegradation properties of poly(3-hydroxybutyrate). Polym Degrad Stab 91(9):1954–1959CrossRefGoogle Scholar
  41. 41.
    Pizzoli M, Scandola M, Ceccorulli G (1994) Crystallization and melting behaviour of phb and phb/hv copolymer. Macromolecules 27(17):4755–4761CrossRefGoogle Scholar
  42. 42.
    Prakalathan K, Mohanty S, Nayak SK (2014) Reinforcing effect and isothermal crystallization kinetics of poly(3-hydroxybutyrate) nanocomposites blended with organically modified montmorillonite. Polym Compos 35(5):999–1012CrossRefGoogle Scholar
  43. 43.
    Rajan R, Sreekumar PA, Joseph K, Skrifvars M (2011) Thermal and mechanical properties of chitosan reinforced polyhydroxybutyrate composites. J Appl Polym Sci 124(4):3357–3362CrossRefGoogle Scholar
  44. 44.
    Ruka DR, Simon GP, Dean KM (2013) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr Polym 92(2):1717–1723CrossRefGoogle Scholar
  45. 45.
    Shogren R (1997) Water vapor permeability of biodegradable polymers. J Environ Polym Degrad 5(2):91–95CrossRefGoogle Scholar
  46. 46.
    Siparsky GL, Voorhees KJ, Dorgan JR, Schilling K (1997) Water transport in polylactic acid (pla), pla/polycaprolactone copolymers, and pla/polyethylene glycol blends. J Environ Polym Degrad 5(3):125–136Google Scholar
  47. 47.
    Srithep Y, Ellingham T, Peng J, Sabo R, Clemons C, Turng PSL (2013) Melt compounding of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/nanofibrillated cellulose nanocomposites. Polym Degrad Stab 98(8):1439–1449CrossRefGoogle Scholar
  48. 48.
    Starkweat HW, Brooks RE (1959) Effect of spherulites on the mechanical properties of nylon 66. J Appl Polym Sci 1(2):236–239CrossRefGoogle Scholar
  49. 49.
    Suttiwijitpukdee N, Sato H, Zhang J, Hashimoto T (2011a) Effects of intermolecular hydrogen bondings on isothermal crystallization behavior of polymer blends of cellulose acetate butyrate and poly(3-hydroxybutyrate). Macromolecules 44:3467–3477CrossRefGoogle Scholar
  50. 50.
    Suttiwijitpukdee N, Sato H, Zhang J, Hashimoto T, Ozaki Y (2011b) Intermolecular interactions and crystallization behaviors of biodegradable polymer blends between poly (3-hydroxybutyrate) and cellulose acetate butyrate studied by dsc, ft-ir, and waxd. Polymer 52(2):461–471CrossRefGoogle Scholar
  51. 51.
    Suttiwijitpukdee N, Sato H, Unger M, Ozaki Y (2012) Effects of hydrogen bond intermolecular interactions on the crystal spherulite of poly(3-hydroxybutyrate) and cellulose acetate butyrate blends: Studied by ft-ir and ft-nir imaging spectroscopy. Macromolecules 45(6):2736–2748CrossRefGoogle Scholar
  52. 52.
    Thellen C, M C, Froio D, Auerbach M, Wirsen C, Ratto JA (2008) A processing, characterization and marine biodegradation study of melt-extruded polyhydroxyalkanoate (pha) films. J Polym Environ 16(1):1–11CrossRefGoogle Scholar
  53. 53.
    Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5(4):249–261CrossRefGoogle Scholar
  54. 54.
    Way JL, Atkinson JR, Nutting J (1974) The effect of spherulite size on the fracture morphology of polypropylene. J Mater Sci 9(2):293–299. doi: 10.1007/BF00550954 CrossRefGoogle Scholar
  55. 55.
    Weihua K, He Y, Askawa N, Inoue Y (2004) Effect of lignin particles as a nucleating agent on crystallization of poly(3-hydroxybutyrate). J Appl Polym Sci 94(6):2466–2474CrossRefGoogle Scholar
  56. 56.
    World Packaging Organization (2008) Market statistics and future trends in global packaging.
  57. 57.
    Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4(6):3091–3101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Chemical EngineeringMcGill UniversityMontrealCanada
  2. 2.Department of Chemistry, Centre for Self-Assembled Chemical StructuresMcGill UniversityMontrealCanada
  3. 3.Pulp and Paper Research Centre, Department of ChemistryMcGill UniversityMontrealCanada

Personalised recommendations