Journal of Materials Science

, Volume 50, Issue 10, pp 3631–3637 | Cite as

Multilayer La-modified PbTiO3 capacitors via RF magnetron sputtering

  • Fumiya Kurokawa
  • Yuji Imamiya
  • Hirotaka Hida
  • Isaku Kanno
Original Paper


In this study, multilayer ceramics (MLCs) composed of La-modified PbTiO3 layers with internal Pt electrodes were fabricated by radio frequency (RF) magnetron sputtering. Multiple (Pb0.9,La0.1)Ti0.975O3 (PLT) layers with thicknesses of approximately 500 nm were deposited on Pt/Ti-coated Si substrates through a square movable shadow mask. The isolated internal Pt electrodes were prepared by sliding the movable shadow mask. The MLCs composed of one, three, and five PLT layers were fabricated by alternate sputtering deposition of Pt electrodes and PLT ferroelectric layers with the movable shadow mask. The MLCs had a smooth and crack-free surface, and dense PLT layers could be prepared between the internal Pt electrodes. The MLCs exhibited excellent dielectric properties and their capacitances increased with the number of PLT layers, while the dielectric losses were lower than 3.5 %. The PE hysteresis loops of MLCs showed symmetric loops because of the alternating direction of external electric field on the ferroelectric PLT layers.


Dielectric Layer Relative Dielectric Constant Shadow Mask Effective Capacitance LaNiO3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sakabe Y (1997) Multilayer ceramic capacitors. Curr Opin Solid State Mater Sci 2:584–587CrossRefGoogle Scholar
  2. 2.
    Uchino K, Takahashi S (1996) Multilayer ceramic actuators. Curr Opin Solid State Mater Sci 1:698–705CrossRefGoogle Scholar
  3. 3.
    Pepin JG (1991) Multilayer ceramic capacitor electrodes: powder technology and fired properties. J Mater Sci: Mater Electron 2:34–39. doi: 10.1007/BF00695002 Google Scholar
  4. 4.
    Goldberg RL, Smith SW (1994) Multilayer piezoelectric ceramics for two-dimensional array transducers. IEEE Trans Ultrason Ferroelectr Freq Control 41:761–771CrossRefGoogle Scholar
  5. 5.
    Harris NR, Hill M, Torah R, Townsend R, Beeby S, White NM, Ding J (2006) A multilayer thick-film PZT actuator for MEMs applications. Sens Actuat A 132:311–316CrossRefGoogle Scholar
  6. 6.
    Randall CA (2001) Scientific and engineering issues of the state-of-the-art and future multilayer capacitors. J Ceram Soc Jpn 109:S2–S6CrossRefGoogle Scholar
  7. 7.
    Kishi H, Mizuno Y, Chazono H (2003) Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn J Appl Phys 42:1–15CrossRefGoogle Scholar
  8. 8.
    Xu T-B, Jiang X, Su J (2011) A piezoelectric multilayer-stacked hybrid actuation/transduction system. Appl Phys Lett 98:243503CrossRefGoogle Scholar
  9. 9.
    Mistler RE, Twiname ER (2000) Tape Casting: Theory and Practice. Wiley-American Ceramic Society, Westerville, OHGoogle Scholar
  10. 10.
    Tok AIY, Boey FYC, Lam YC (2000) Non-newtonian fluid flow model for ceramic tape casting. Mater Sci Eng A 280:282–288CrossRefGoogle Scholar
  11. 11.
    Young AL, Hilmas GE, Zhang SC, Schwartz RW (2007) Mechanical vs. electrical failure mechanisms in high voltage, high energy density multilayer ceramic capacitors. J Mater Sci 42:5613–5619. doi: 10.1007/s10853-006-1116-2 CrossRefGoogle Scholar
  12. 12.
    Mizuno Y, Hagiwara T, Kishi H (2007) Microstructural design of dielectrics for Ni-MLCC with ultra-thin active layers. J Ceram Soc Jpn 115:360–364CrossRefGoogle Scholar
  13. 13.
    Morita T, Yoshida R (1999) A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator. IEEE Trans Ultrason Ferroelectr Freq Control 46:1439–1445CrossRefGoogle Scholar
  14. 14.
    Watanabe J, Someji T, Jomura S (1999) Fundamental consideration of piezoelectric multilayer actuators with interdigital-electrode-type structure. Jpn J Appl Phys 38:3331–3333CrossRefGoogle Scholar
  15. 15.
    Jing Y, Luo J, Yi X, Gu X (2004) Design and evaluation of PZT thin-film micro-actuator for hard disk drives. Sens Actuators A 116:329–335CrossRefGoogle Scholar
  16. 16.
    Arlt G, Hennings D, de With G (1985) Dielectric properties of fine-grained barium titanate ceramics. J Appl Phys 58:1619–1625CrossRefGoogle Scholar
  17. 17.
    Li X, Shih W (1997) Size effects in barium titanate particles and clusters. J Am Ceram Soc 80:2844–2852CrossRefGoogle Scholar
  18. 18.
    Randall CA, Kim N, Kucera J, Cao W, Shrout TR (2005) Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J Am Ceram Soc 81:677–688CrossRefGoogle Scholar
  19. 19.
    Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park NY, Stephenson GB, Stolitchnov I, Taganstev AK, Taylor DV, Yamada T, Streiffer S (2006) Ferroelectric thin films: review of materials, properties, and applications. J Appl Phys 100:051606CrossRefGoogle Scholar
  20. 20.
    Tabata H, Tanaka H, Kawai T (1994) Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties. Appl Phys Lett 65:1970–1972CrossRefGoogle Scholar
  21. 21.
    Kanno I, Hayashi S, Takayama R, Hirao T (1996) Superlattices of PbZrO3 and PbTiO3 prepared by multi-ion-beam sputtering. Appl Phys Lett 68:328–330CrossRefGoogle Scholar
  22. 22.
    Lee HN, Christen HM, Chisholm MF, Rouleau CM, Lowndes DH (2005) Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 433:395–399CrossRefGoogle Scholar
  23. 23.
    Sakabe Y, Takeshima Y, Tanaka K (1999) Multilayer Ceramic capacitors with thin (Ba, Sr)TiO3 layers by MOCVD. J Electroceram 3:115–121CrossRefGoogle Scholar
  24. 24.
    Nagata H, Ko SW, Hong E, Randall CA, Trolier-McKinstry S (2006) Microcontact printed BaTiO3 and LaNiO3 thin films for capacitors. J Am Ceram Soc 89:2816–2821Google Scholar
  25. 25.
    Imamiya Y, Kanno I, Yokokawa R, Kotera H (2011) Multilayer thin-film capacitor fabricated by radio-frequency magnetron sputtering. Jpn J Appl Phys 50:09NA01CrossRefGoogle Scholar
  26. 26.
    Iijima K, Takayama R, Tomita Y, Ueda I (1986) Epitaxial growth and the crystallographic, dielectric, and pyroelectric properties of lanthanum-modified lead titanate thin films. J Appl Phys 60:2914–2919CrossRefGoogle Scholar
  27. 27.
    Ren W, Liu Y, Qiu J, Zhang L, Yao X (1994) Properties of PLT thin films by thermal decomposition of metallo-organic compounds. Ferroelectrics 152:201–206CrossRefGoogle Scholar
  28. 28.
    Kang YM, Ku JK, Baik S (1995) Crystallographic characterization of tetragonal (Pb, La)TiO3 epitaxial thin films grown by pulsed laser deposition. J Appl Phys 78:2601–2606CrossRefGoogle Scholar
  29. 29.
    Bhaskar S, Majumder SB, Katiyar RS (2002) Diffuse phase transition and relaxor behavior in (PbLa)TiO3 thin films. Appl Phys Lett 80:3997–3999CrossRefGoogle Scholar
  30. 30.
    Dong Z, Shen M, Cao W (2003) Fatigue-free La-modified PbTiO3 thin films prepared by pulsed-laser deposition on Pt/Ti/SiO2/Si substrates. Appl Phys Lett 82:1449CrossRefGoogle Scholar
  31. 31.
    Lee J, Ramesh R (1996) Imprint of (Pb, La)(Zr, Ti)O3 thin films with various crystalline qualities. Appl Phys Lett 68:484–486CrossRefGoogle Scholar
  32. 32.
    Abe K, Komatsu S, Yanase N, Sano K, Kawakubo T (1997) Asymmetric ferroelectricity and anomalous current conduction in heteroepitaxial BaTiO3 thin films. Jpn J Appl Phys 36:5846–5853CrossRefGoogle Scholar
  33. 33.
    Abe K, Yanase N, Yasumoto T, Kawakubo T (2002) Voltage shift phenomena in a heteroepitaxial BaTiO3 thin film capacitor. J Appl Phys 91:323–330CrossRefGoogle Scholar
  34. 34.
    Ban Z-G, Alpay S, Mantese J (2003) Fundamentals of graded ferroic materials and devices. Phys Rev B 67:184104CrossRefGoogle Scholar
  35. 35.
    Ye Z, Tang MH, Zhou YC, Zheng XJ, Cheng CP, Hu ZS, Hu HP (2007) Modeling of imprint in hysteresis loop of ferroelectric thin films with top and bottom interface layers. Appl Phys Lett 90:042902CrossRefGoogle Scholar
  36. 36.
    Chen F, Tan X, Huang Z, Xuan X, Wu W (2010) Effect of electrode configurations on the process-induced imprint behavior. Appl Phys Lett 96:262902CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Fumiya Kurokawa
    • 1
  • Yuji Imamiya
    • 2
  • Hirotaka Hida
    • 1
  • Isaku Kanno
    • 1
  1. 1.Mechanical EngineeringKobe UniversityKobeJapan
  2. 2.Micro EngineeringKyoto UniversityKyotoJapan

Personalised recommendations