Skip to main content
Log in

Structure and microwave dielectric properties of La5−x Sr x Ti4+x Ga1−x O17 ceramics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Single phase polycrystalline ceramics in the La5−x Sr x Ti4+x Ga1−x O17 (x = 0–1) system with A5B5O17 type layered perovskite structure were prepared via a mixed-oxide, solid state sintering route. X-ray diffraction revealed orthorhombic, Pnnm symmetry with Raman spectra consistent with this space group. The sintered ceramics exhibited a plate-like grain structure with a relative density, 94–97.5 %. The end member, La5Ti4GaO17 had ε r = 42.31, Q × f o = 17,093 GHz, τ f = −34.53 but τ f could be tuned close to zero by Sr and Ti substitution at the A- and B-sites, respectively. An optimum composition La4.5Sr0.5Ti4.5Ga0.5O17 was achieved at x = 0.5 with ε r = 51, Q × f o = 15,290 GHz and τ f = −2.2 ppm/oC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Muhammad R, Iqbal Y, Rambo CR, Khan HU (2014) Research trends in microwave dielectrics and factors affecting their properties: a review. Int J Mater Res 105:431–439

    Article  Google Scholar 

  2. Sreemoolanadhan H, Sebastian MT, Mohanan P (1995) High permittivity and low loss ceramics in the BaO-SrO-Nb2O5 system. Mater Res Bull 30:653–658

    Article  Google Scholar 

  3. Ohsato H (2005) Research and development of microwave dielectric ceramics for wireless communications. J Ceram Soc Jpn 113:703–711

    Article  Google Scholar 

  4. Sebastian MT (2010) Dielectric materials for wireless communication. Elsevier, New York

    Google Scholar 

  5. Mirsaneh M, Leisten OP, Zalinska B, Reaney IM (2008) Circularly polarized dielectric-loaded antennas: current technology and future challenges. Adv Funct Mater 18:2293–2300

    Article  Google Scholar 

  6. Reaney IM, Iddles D (2006) Microwave dielectric ceramics for resonators and filters in mobile phone networks. J Am Ceram Soc 89:2063–2072

    Google Scholar 

  7. Iqbal Y, Manan A, Reaney IM (2011) Low loss Sr1−xCaxLa4Ti5O17 microwave dielectric ceramics. Mater Res Bull 46:1092–1096

    Article  Google Scholar 

  8. Iqbal Y, Manan A (2012) Preparation and characterization of new Sr5−xLaxNb4−xTi1+xO17 microwave dielectric ceramics. J Electron Mater 41:2393–2398

    Article  Google Scholar 

  9. Manan A, Iqbal Y (2012) Microwave dielectric properties of new SrLa4−xNdxTi5O17 ceramics. Mater Res Bull 47:883–888

    Article  Google Scholar 

  10. Muhammad R, Iqbal Y (2013) Preparation and characterization of K-substituted NaCa4Nb5O17 microwave dielectric ceramics. J Mater Sci: Mater Electron 24:2322–2326

    Google Scholar 

  11. Iqbal Y, Muhammad R (2013) Phase, microstructure, and microwave dielectric properties of NaCa4−xSrxNb5O17 (x = 0 to 4) ceramics. J Electron Mater 42:452–457

    Article  Google Scholar 

  12. Isupov V (1999) Crystal chemical aspects of the layered perovskite-like oxide ferroelectrics of the AnMnO3n+2 type. Ferroelectrics 220:79–103

    Article  Google Scholar 

  13. Guevarra J, Smaalen SV, Rotiroti N, Paulmann C, Lichtenberg F (2005) Crystal structure of Ca5Nb5O17. J Sol Stat Chem 178:2934–2941

    Article  Google Scholar 

  14. Vanderah T, Miller V, Levin I, Bell S, Negas T (2004) Phase relations, crystal chemistry, and dielectric properties in sections of the La2O3–CaO–MgO–TiO2 system. J Sol Stat Chem 177:2023–2038

    Article  Google Scholar 

  15. Levin I, Bendersky LA (1999) Symmetry classification of the layered perovskite-derived AnBnX3n+2 structures. Acta Crystallogr Sec B 55:853–866

    Article  Google Scholar 

  16. Takahashi J, Kageyama K, Kodaira K (1993) Microwave dielectric properties of lanthanide titanate ceramics. Jpn J Appl Phys 32:4327–4331

    Article  Google Scholar 

  17. Li Z, Wu W, Liu F, Li Y, Si P, Ge H (2014) Microwave dielectric properties of La4Ti3O12 ceramics. Mater Lett 118:24–26

    Article  Google Scholar 

  18. Kuang X, Allix MM, Claridge JB, Niu HJ, Rosseinsky MJ, Ibberson RM, Iddles DM (2006) Crystal structure, microwave dielectric properties and AC conductivity of B-cation deficient hexagonal perovskites La5MxTi4–xO15 (x = 0.5, 1; M = Zn, Mg, Ga, Al). J Mater Chem 16:1038

    Article  Google Scholar 

  19. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sec A 32:751–767

    Article  Google Scholar 

  20. Shannon RD (1993) Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys 73:348–366

    Article  Google Scholar 

  21. Zhao F, Yue Z, Gui Z, Li L (2006) Effects of zinc substitution on crystal structure and microwave dielectric properties of CaLa4Ti5O17 ceramics. J Am Ceram Soc 89:3421–3425

    Article  Google Scholar 

  22. Muhammad R, Iqbal Y, Rambo CR (2015) Structure–property relationship in NaCa4B5O17 (B = Nb, Ta) perovskites. J Mater Sci: Mater Electron. doi:10.1007/s10854-014-2662-z

    Google Scholar 

  23. Iqbal Y, Reaney IM (2004) Microstructure-property relationship in dielectric ceramics containing (Nb, Ti)O6 octahedra. Ferroelectrics 302:259–263

    Article  Google Scholar 

  24. Vineis C, Davies P, Negas T, Bell S (1996) Microwave dielectric properties of hexagonal perovskites. Mater Res Bull 31:431–437

    Article  Google Scholar 

  25. Ohsato H (2001) Science of tungstenbronze-type like Ba6–3xR8+2xTi18O54 (R = rare earth) microwave dielectric solid solutions. J Eur Ceram Soc 21:2703–2711

    Article  Google Scholar 

  26. Zhou D, Randall CA, Wang H, Pang LX, Yao X (2009) Microwave dielectric properties trends in a solid solution (Bi1−xLnx)2Mo2O9 (Ln = La, Nd, 0.0 ≤ x ≤ 0.2) system. J Am Ceram Soc 92:2931–2936

    Article  Google Scholar 

  27. Reaney IM, Enrico LC, Nava S (1994) Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor. Jpn J Appl Phys 33:3984

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Higher Education Commission of Pakistan under the IRSIP program. The financial support extended by the Khyber Pakhtunkhwa Government through the Directorate of S&T, Peshawar for the upgradation of Materials Research Laboratory, University of Peshawar is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaseen Iqbal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, R., Iqbal, Y. & Reaney, I.M. Structure and microwave dielectric properties of La5−x Sr x Ti4+x Ga1−x O17 ceramics. J Mater Sci 50, 3510–3516 (2015). https://doi.org/10.1007/s10853-015-8914-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8914-3

Keywords

Navigation