Advertisement

Journal of Materials Science

, Volume 50, Issue 9, pp 3510–3516 | Cite as

Structure and microwave dielectric properties of La5−x Sr x Ti4+x Ga1−x O17 ceramics

  • Raz Muhammad
  • Yaseen Iqbal
  • Ian M. Reaney
Original Paper

Abstract

Single phase polycrystalline ceramics in the La5−x Sr x Ti4+x Ga1−x O17 (x = 0–1) system with A5B5O17 type layered perovskite structure were prepared via a mixed-oxide, solid state sintering route. X-ray diffraction revealed orthorhombic, Pnnm symmetry with Raman spectra consistent with this space group. The sintered ceramics exhibited a plate-like grain structure with a relative density, 94–97.5 %. The end member, La5Ti4GaO17 had ε r = 42.31, Q × f o = 17,093 GHz, τ f = −34.53 but τ f could be tuned close to zero by Sr and Ti substitution at the A- and B-sites, respectively. An optimum composition La4.5Sr0.5Ti4.5Ga0.5O17 was achieved at x = 0.5 with ε r = 51, Q × f o = 15,290 GHz and τ f = −2.2 ppm/oC.

Keywords

Relative Permittivity Ga2O3 Microwave Dielectric Property Dielectric Resonator Small Ionic Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge the financial support of the Higher Education Commission of Pakistan under the IRSIP program. The financial support extended by the Khyber Pakhtunkhwa Government through the Directorate of S&T, Peshawar for the upgradation of Materials Research Laboratory, University of Peshawar is highly acknowledged.

References

  1. 1.
    Muhammad R, Iqbal Y, Rambo CR, Khan HU (2014) Research trends in microwave dielectrics and factors affecting their properties: a review. Int J Mater Res 105:431–439CrossRefGoogle Scholar
  2. 2.
    Sreemoolanadhan H, Sebastian MT, Mohanan P (1995) High permittivity and low loss ceramics in the BaO-SrO-Nb2O5 system. Mater Res Bull 30:653–658CrossRefGoogle Scholar
  3. 3.
    Ohsato H (2005) Research and development of microwave dielectric ceramics for wireless communications. J Ceram Soc Jpn 113:703–711CrossRefGoogle Scholar
  4. 4.
    Sebastian MT (2010) Dielectric materials for wireless communication. Elsevier, New YorkGoogle Scholar
  5. 5.
    Mirsaneh M, Leisten OP, Zalinska B, Reaney IM (2008) Circularly polarized dielectric-loaded antennas: current technology and future challenges. Adv Funct Mater 18:2293–2300CrossRefGoogle Scholar
  6. 6.
    Reaney IM, Iddles D (2006) Microwave dielectric ceramics for resonators and filters in mobile phone networks. J Am Ceram Soc 89:2063–2072Google Scholar
  7. 7.
    Iqbal Y, Manan A, Reaney IM (2011) Low loss Sr1−xCaxLa4Ti5O17 microwave dielectric ceramics. Mater Res Bull 46:1092–1096CrossRefGoogle Scholar
  8. 8.
    Iqbal Y, Manan A (2012) Preparation and characterization of new Sr5−xLaxNb4−xTi1+xO17 microwave dielectric ceramics. J Electron Mater 41:2393–2398CrossRefGoogle Scholar
  9. 9.
    Manan A, Iqbal Y (2012) Microwave dielectric properties of new SrLa4−xNdxTi5O17 ceramics. Mater Res Bull 47:883–888CrossRefGoogle Scholar
  10. 10.
    Muhammad R, Iqbal Y (2013) Preparation and characterization of K-substituted NaCa4Nb5O17 microwave dielectric ceramics. J Mater Sci: Mater Electron 24:2322–2326Google Scholar
  11. 11.
    Iqbal Y, Muhammad R (2013) Phase, microstructure, and microwave dielectric properties of NaCa4−xSrxNb5O17 (x = 0 to 4) ceramics. J Electron Mater 42:452–457CrossRefGoogle Scholar
  12. 12.
    Isupov V (1999) Crystal chemical aspects of the layered perovskite-like oxide ferroelectrics of the AnMnO3n+2 type. Ferroelectrics 220:79–103CrossRefGoogle Scholar
  13. 13.
    Guevarra J, Smaalen SV, Rotiroti N, Paulmann C, Lichtenberg F (2005) Crystal structure of Ca5Nb5O17. J Sol Stat Chem 178:2934–2941CrossRefGoogle Scholar
  14. 14.
    Vanderah T, Miller V, Levin I, Bell S, Negas T (2004) Phase relations, crystal chemistry, and dielectric properties in sections of the La2O3–CaO–MgO–TiO2 system. J Sol Stat Chem 177:2023–2038CrossRefGoogle Scholar
  15. 15.
    Levin I, Bendersky LA (1999) Symmetry classification of the layered perovskite-derived AnBnX3n+2 structures. Acta Crystallogr Sec B 55:853–866CrossRefGoogle Scholar
  16. 16.
    Takahashi J, Kageyama K, Kodaira K (1993) Microwave dielectric properties of lanthanide titanate ceramics. Jpn J Appl Phys 32:4327–4331CrossRefGoogle Scholar
  17. 17.
    Li Z, Wu W, Liu F, Li Y, Si P, Ge H (2014) Microwave dielectric properties of La4Ti3O12 ceramics. Mater Lett 118:24–26CrossRefGoogle Scholar
  18. 18.
    Kuang X, Allix MM, Claridge JB, Niu HJ, Rosseinsky MJ, Ibberson RM, Iddles DM (2006) Crystal structure, microwave dielectric properties and AC conductivity of B-cation deficient hexagonal perovskites La5MxTi4–xO15 (x = 0.5, 1; M = Zn, Mg, Ga, Al). J Mater Chem 16:1038CrossRefGoogle Scholar
  19. 19.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sec A 32:751–767CrossRefGoogle Scholar
  20. 20.
    Shannon RD (1993) Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys 73:348–366CrossRefGoogle Scholar
  21. 21.
    Zhao F, Yue Z, Gui Z, Li L (2006) Effects of zinc substitution on crystal structure and microwave dielectric properties of CaLa4Ti5O17 ceramics. J Am Ceram Soc 89:3421–3425CrossRefGoogle Scholar
  22. 22.
    Muhammad R, Iqbal Y, Rambo CR (2015) Structure–property relationship in NaCa4B5O17 (B = Nb, Ta) perovskites. J Mater Sci: Mater Electron. doi: 10.1007/s10854-014-2662-z Google Scholar
  23. 23.
    Iqbal Y, Reaney IM (2004) Microstructure-property relationship in dielectric ceramics containing (Nb, Ti)O6 octahedra. Ferroelectrics 302:259–263CrossRefGoogle Scholar
  24. 24.
    Vineis C, Davies P, Negas T, Bell S (1996) Microwave dielectric properties of hexagonal perovskites. Mater Res Bull 31:431–437CrossRefGoogle Scholar
  25. 25.
    Ohsato H (2001) Science of tungstenbronze-type like Ba6–3xR8+2xTi18O54 (R = rare earth) microwave dielectric solid solutions. J Eur Ceram Soc 21:2703–2711CrossRefGoogle Scholar
  26. 26.
    Zhou D, Randall CA, Wang H, Pang LX, Yao X (2009) Microwave dielectric properties trends in a solid solution (Bi1−xLnx)2Mo2O9 (Ln = La, Nd, 0.0 ≤ x ≤ 0.2) system. J Am Ceram Soc 92:2931–2936CrossRefGoogle Scholar
  27. 27.
    Reaney IM, Enrico LC, Nava S (1994) Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor. Jpn J Appl Phys 33:3984CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Materials Research Laboratory, Department of PhysicsUniversity of PeshawarPeshawarPakistan
  2. 2.Department of Materials Science and EngineeringUniversity of SheffieldSheffieldUK

Personalised recommendations