Advertisement

Journal of Materials Science

, Volume 50, Issue 9, pp 3447–3456 | Cite as

Mechanochemically assisted solid state synthesis, characterization, and catalytic properties of MgWO4

  • Maria Gancheva
  • Anton Naydenov
  • Reni Iordanova
  • Diana Nihtianova
  • Plamen Stefanov
Original Paper

Abstract

The synthesis of MgWO4 nanopowders was achieved by mechanically activated and following thermal treatment at 850 °C of two mixtures, containing the pure oxides (MgO/WO3) and magnesium carbonate trihydrate and tungsten oxide (MgCO3·3H2O/WO3) as precursors. The obtained samples have been analyzed by the X-ray powder diffraction, infrared spectroscopy (IR), thermal analysis, specific surface area, transmission electron microscopy (TEM, SAED, and XEDS), and X-ray photoelectron spectroscopy. The prepared samples were modified with 0.5 wt% Pd, and the catalytic activities have been measured in reaction of complete oxidation of CO, methane, n-hexane, and toluene. It has been observed that Pd-containing samples with 3 wt% WO3 are more active than the MgWO4/Pd, the most remarkable improvement being achieved in the reaction of toluene combustion. This result is explained by the presence of the palladium in Pd4+ state (as PdO2 particles) due to the stabilization role of the WO3-matrix.

Keywords

Tungsten Oxide Conversion Degree MgCO3 Pure Oxide Plug Flow Reactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The financial support of the National Science Fund, Ministry of Education and Science, Bulgaria, (Contract No. DFNI—T01/6) is greatly acknowledged.

References

  1. 1.
    Zhang J, Wang Y, Li S, Wang X, Huang F, Xie A, Shen Y (2012) Controlled synthesis, growth mechanism and optical properties of FeWO4 hierarchical microstructures. Cryst Eng Commun 13:5744–5750CrossRefGoogle Scholar
  2. 2.
    VanHanh P, Hoang LH, Hai PV, Minh NV, Chen XB, Yang IS (2013) Crystal quality and optical property of MnWO4 nanoparticles synthesized by microwave-assisted method. J Phys Chem Solids 74:426–430CrossRefGoogle Scholar
  3. 3.
    Klassen N, Shmurak S, Red’kin B, Ille B, Lebeau M, Lecoq P, Schneegans M (2002) Correlations between structural and scintillation characteristics of lead and cadmium tungstates. Nucl Instrum Methods Phys Res Sect A 486:431–436CrossRefGoogle Scholar
  4. 4.
    Huang Y, Seo HJ, Yang Y, Zhang J (2005) Visible up-conversion luminescence in Er3+-doped PbWO4 single crystals. Mater Chem Phys 91:424–430CrossRefGoogle Scholar
  5. 5.
    Tamaki J, Fujii T, Fujimori K, Miura N, Yamazoe N (1995) Application of metal tungstate–carbonate to nitrogen oxides sensor operative at elevated temperature. Sens Actuators B 24–25:396–399CrossRefGoogle Scholar
  6. 6.
    Sundaram R, Nagaraja KS (2004) Electrical and humidity sensing properties of lead (II) tungstate–tungsten (VI) oxide and zinc(II) tungstate–tungsten(VI) oxide composites. Mater Res Bull 39:581–590CrossRefGoogle Scholar
  7. 7.
    Fu H, Lin J, Zhang L, Zhu Y (2006) Photocatalytic activities of a novel ZnWO4 catalyst prepared by a hydrothermal process. Appl Catal 306:58–67CrossRefGoogle Scholar
  8. 8.
    Shan Z, Wang Y, Ding H, Huang F (2009) Structure-dependent photocatalytic activities of MWO4 (M=Ca, Sr, Ba). J Mol Catal 302:54–58CrossRefGoogle Scholar
  9. 9.
    Yan T, Li L, Tong W, Zheng J, Wang Y, Li G (2011) CdWO4 polymorphs: selective preparation, electronic structure, and photocatalytic activity. J Solid State Chem 184:357–364CrossRefGoogle Scholar
  10. 10.
    Mohamed MM, Ahmed SA, Khairou KS (2014) Unprecedented high photocatalytic activity of nanocrystalline WO3/NiWO4 hetero-junction towards dye degradation: effect of template and synthesis conditions. Appl Catal B 150–151:63–73CrossRefGoogle Scholar
  11. 11.
    Carcia-Perez UM, Martinez-de la Cruz A, Peral J (2012) Transition metal tungstates by co-precipitation method: basic photocatalytic properties. Electrochim Acta 81:227–232CrossRefGoogle Scholar
  12. 12.
    Yu C, Cao F, Li X, Li C, Xie Y, Yu JC, Shu Q, Fan Q (2013) Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation. Chem Eng J 219:86–95CrossRefGoogle Scholar
  13. 13.
    Ungelenk J, Speldrich M, Dronskowski R, Feldmann C (2014) Polyol-mediated low-temperature synthesis of crystalline tungstate nanoparticles MWO4 (M=Mn, Fe Co, Ni, Cu, Zn). Solid State Sci 31:62–69CrossRefGoogle Scholar
  14. 14.
    Keeling RO (1957) The structure of NiWO4. Acta Cryst 10:209–213CrossRefGoogle Scholar
  15. 15.
    Chang LLY, Scroger MG, Phillips B (1966) Alkaline-earth tungstates: equilibrium and stability in the M-W-O systems. J Am Ceram Soc 49:385–390CrossRefGoogle Scholar
  16. 16.
    Sleight AW (1972) Accurate cell dimensions for ABO4 molybdates and tungstates. Acta Cryst B28:2899–2902CrossRefGoogle Scholar
  17. 17.
    Borshch AN, Dorokhov YG, Golub AM (1979) For low-temperature modification of MgWO4. Ukr Khim Zh 39:724–726Google Scholar
  18. 18.
    Dey S, Ricciardo RA, Cuthbert HL, Woodward PM (2014) Metal- to-metal charge transfer in AWO4 (A=Mg, Mn Co, Ni, Cu or Zn) compounds with wolframite structure. Inorg Chem 53:4394–4397CrossRefGoogle Scholar
  19. 19.
    Blasse G, Dirksen GJ, Hazenkamp M, Günter JR (1987) The luminescence of magnesium tungstate dehydrate, MgWO4·2H2O. Mater Res Bull 22:813–817CrossRefGoogle Scholar
  20. 20.
    Günter JR, Amberg M (1989) “High- temperature” magnesium tungstate, prepared at moderate temperature. Solid State Ion 32(33):141–146CrossRefGoogle Scholar
  21. 21.
    Ll JQ, Yang C, Meng JX (2009) Hydrothermal synthesis of MgWO4 and its luminescence. Chin J Lumin 3:327–332Google Scholar
  22. 22.
    Wannapop S, Thongtem T, Thongtem S (2012) Photoemission and energy gap of MgWO4 particles connecting as nanofibers synthesized by electrospinning–calcination combinations. Appl Surf Sci 258:4971–4976CrossRefGoogle Scholar
  23. 23.
    Pullar RC, Farrah S, McN Alford N (2007) MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramic. J Eur Ceram Soc 27:1059–1063CrossRefGoogle Scholar
  24. 24.
    Im DH, Jee HS, Kim ES (2012) Microwave dielectric properties of ceramic/semicrystalline polymer composites. Jpn J Appl Phys 51:09MD16-09MD20Google Scholar
  25. 25.
    Cavalli E, Beletti A, Brik MG (2008) Optical spectra and energy levels of the Cr3 + ions in MWO4 (M=Mg, Zn, Gd) and MgMoO4 crystals. J Phys Chem Solids 69:29–34CrossRefGoogle Scholar
  26. 26.
    Danevich FA, Chernyak DM, Dubovik AM, Grinyov BV, Hency S, Kraus H, Kudavbenko VM, Mikhailik VB, Nagornaya LL, Podviyanuk RB, Polischuk OG, Tupitsyna IA, Vostretsov Yu Y (2009) MgWO4-A new crystal scintillator. Nucl Instrum Methods Phys Res Sect A 608:107–115CrossRefGoogle Scholar
  27. 27.
    He HY, Wang Y (2013) Comparative study on photoluminescence efficiencies of Sm3+ doped MeWO4 (Me=Ba, Sr, Ca and Mg) phosphors. J Mater Sci 24:4847–4852. doi: 10.1007/s10854-013-1486-6 Google Scholar
  28. 28.
    Hwang DH, Im J, Park TJ, Lee JS (2002) Mg-doped WO3 as a novel photocatalyst for visible light –induced water splitting. Catal Lett 12:53–57CrossRefGoogle Scholar
  29. 29.
    Boldyrer VV (2006) Mechanochemistry and mechanical activation of solids. Russ Chem Rev 75:203–216Google Scholar
  30. 30.
    Balaz P, Achimovicova M, Balaz M, Billik P, Cherkezova-Zheleva Z, Criado JM, Delogu F, Dutkova E, Gaffet E, Gotor FJ, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, Wieczorek-Ciurowa K (2014) Hallmarks mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571–7639CrossRefGoogle Scholar
  31. 31.
    Castro A, Begue P, Jimenez B, Ricote J, Jimenez R, Galy J (2003) New Bi2Mo1−xWxO6 solid solution: mechanosynthesis, structural study, and ferroelectric properties of the x = 0.75 Member. Chem Mater 15:3395–3401CrossRefGoogle Scholar
  32. 32.
    Hofmann M, Campbell SJ, Ehrhardt H, Feyerherm R (2004) The magnetic behaviour of nanostructured zinc ferrite. J Mater Sci 39:5057–5065. doi: 10.1023/B:JMSC.0000039185.80910.59 CrossRefGoogle Scholar
  33. 33.
    Stanković A, Lj Veselinović, Škapin SD, Marković S, Uskokovic D (2011) Controlled mechanochemically assisted synthesis of ZnO nanopowders in the presence of oxalic acid. J Mater Sci 46:3716–3724. doi: 10.1007/s10853-011-5273-6 CrossRefGoogle Scholar
  34. 34.
    Fuentes AF, Takacs L (2013) Preparation of multicomponent oxides by mechanochemical methods. J Mater Sci 48:598–611. doi: 10.1007/s10853-012-6909-x CrossRefGoogle Scholar
  35. 35.
    Klissurski D, Mancheva M, Iordanova R, Tyuliev G, Kunev B (2006) Mechanochemical synthesis of nanocrystalline nickle molybdates. J Alloys Compd 422:53–57CrossRefGoogle Scholar
  36. 36.
    Mancheva M, Iordanova R, Klissurski D, Tyuliev G, Kunev B (2007) Direct mechanochemical synthesis of nanocrystalline NiWO4. J Phys Chem C 111:1101–1104CrossRefGoogle Scholar
  37. 37.
    Mancheva M, Iordanova R, Dimitriev Y (2011) Mechanochemical synthesis of nanocrystalline ZnWO4 at room temperature. J Alloys Compd 509:15–20CrossRefGoogle Scholar
  38. 38.
    Ozturk Z, Sen F, Sen S, Gokagac G (2012) The preparation and characterization of nano-sized Pt–Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation. J Mater Sci 47:8134–8144. doi: 10.1007/s10853-012-6709-3 CrossRefGoogle Scholar
  39. 39.
    Qiao D, Lu G, Liu X, Guo Y, Wang Y, Guo Y (2011) Preparation of Ce1−x Fe x O2 solid solution and its catalytic performance for oxidation of CH4 and CO. J Mater Sci 46:3500–3506. doi: 10.1007/s10853-011-5256-7 CrossRefGoogle Scholar
  40. 40.
    Gancheva M, Iordanova R, Dimitriev Y, Nihtianova D, Stefanov P, Naydenov A (2013) Mechanochemical synthesis, characterization and catalytic activity of Bi2WO6 nanoparticles in CO, n-hexane and methane oxidation reactions. J Alloys Compd 370:34–40CrossRefGoogle Scholar
  41. 41.
    Hagen J (2006) Industrial catalysis a practical approach. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 227–228Google Scholar
  42. 42.
    TOPAS V4: general profile and structure analysis software for powder diffraction data, User’s Manual, Bruker AXS, Karlsruhe, Germany Bruker AXS (2008)Google Scholar
  43. 43.
    Hanna R (1965) Infrared properties of magnesium oxide. J Am Ceram Soc 48:376–378CrossRefGoogle Scholar
  44. 44.
    Daniel MF, Desbat B, Lassegues JC, Gerand B, Figlarz M (1987) Infrared and Raman study of WO3 tungsten trioxides and WO3·xH2O tungsten trioxide tydrates. J Solid State Chem 67:235–247CrossRefGoogle Scholar
  45. 45.
    White WB (1971) Infrared characterization of water and hydroxyl ion in the basic magnesium carbonate minerals. Am Mineral 56:46–53Google Scholar
  46. 46.
    Hales MC, Frost RL, Martens WN (2008) Thermo-Raman spectroscopy of synthetic nesquehonite—implication for the geosequestration of greenhouse gases. J Raman Spectrosc 39:1141–1149CrossRefGoogle Scholar
  47. 47.
    Fomichev VV, Kondratov OI (1994) Vibration spectra of compounds with the wolframite structure. Spectrochim Acta A50:1113–1120CrossRefGoogle Scholar
  48. 48.
    Ptak M, Maczka M, Hermanowicz K, Pikul A, Hanuza J (2012) Temperature-dependent Raman and IR studies of multiferroic MnWO4 doped with Ni2+ ions. J Spectrochim Acta A86:85–92CrossRefGoogle Scholar
  49. 49.
    Lesnyak VV, Ischenko EV, Gut IN, Yatsmirskii AV, Boldyreva OYu (2007) The kinetic patterns of CO oxidation on WO3 promoted with Pt or Pd. Russ J Phys Chem A 81:874–877CrossRefGoogle Scholar
  50. 50.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden PrairieGoogle Scholar
  51. 51.
    Kibis LS, Titkov AI, Stadnichenko AI, Koscheev SV, Boronin AI (2009) X-ray photoelectron spectroscopy study of Pd oxidation by RF discharge in oxygen. Appl Surf Sci 255:9248–9254CrossRefGoogle Scholar
  52. 52.
    Sohn Y, Pradhan D, Leung KT (2010) Electrochemical Pd nanodeposits on a Au nanoisland template supported on Si(100): formation of Pd–Au alloy and interfacial electronic structures. ACS Nano 4:5111–5120CrossRefGoogle Scholar
  53. 53.
    Kibis LS, Stadnichenko AI, Koscheev SV, Zaikovskii VI, Boronin AI (2012) Highly oxidized palladium nanoparticles comprising Pd4+ species: spectroscopic and structural aspects, thermal stability, and reactivity. J Phys Chem C 116:19342–19348CrossRefGoogle Scholar
  54. 54.
    Fan X, Wang F, Zhu T, He H (2012) Effects of Ce on catalytic combustion of methane over Pd–Pt/Al2O3 catalyst. J Environ Sci 24(3):507–511CrossRefGoogle Scholar
  55. 55.
    Persson K, Erson A, Ansson K, Fierro JLG, Jaras SG (2006) Influence of molar ration on Pd–Pt catalysts for methane combustion. J Catal 243:14–24CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Maria Gancheva
    • 1
  • Anton Naydenov
    • 1
  • Reni Iordanova
    • 1
  • Diana Nihtianova
    • 1
    • 2
  • Plamen Stefanov
    • 1
  1. 1.Institute of General and Inorganic ChemistryBulgarian Academy of ScienceSofiaBulgaria
  2. 2.Institute of Mineralogy and CrystallographyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations