Journal of Materials Science

, Volume 50, Issue 8, pp 3246–3251 | Cite as

Effect of sintering temperature on electrical properties of gadolinium-doped ceria ceramics

  • Saulius Kazlauskas
  • Algimantas Kežionis
  • Tomas Šalkus
  • Antanas Feliksas Orliukas
Original Paper


Electrical properties of 10 mol% Gd2O3–90 mol% CeO2 (GDC10) and 20 mol% Gd2O3–80 mol% CeO2 (GDC20) ceramics, sintered in various temperatures from 1100 to 1500 °C for 2 h, have been investigated by 2- and 4-electrode impedance measurement methods. The sintering temperature was found to have a significant effect on electrical properties of the grain boundary medium. A brick-layer model-based analysis of the experimental data of grain boundary medium was carried out for the estimation of proportion ratio between grain dimension and grain boundary thickness. Impedance spectra, obtained by 4-electrode method, were also examined by numerically calculating the probability density function of distribution of relaxation times of charge carriers. The latter method revealed time domain behavior of the system, which allowed more accurate evaluation of the most probable relaxation times. GDC10 samples, sintered at 1400 and 1500 °C, showed a particular relaxation behavior of charge carriers in grain boundary medium. Two distinct peaks of the imaginary impedance (both associated to grain boundary) were detected, which suggest that grain boundary medium in these specimens may consist of two phases with different electrical properties.


CeO2 Sinter Temperature Gd2O3 Relaxation Frequency Boundary Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was funded by a Grant No. ATE-09/2012 from the Research Council of Lithuania.


  1. 1.
    Fergus JW (2010) Electrolytes for solid oxide fuel cells. J Power Sources 162:30–40CrossRefGoogle Scholar
  2. 2.
    Steele BCH (2000) Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ion 129:95–110CrossRefGoogle Scholar
  3. 3.
    Hui S, Roller J, Yick S, Zhang X, Decès-Petit C, Xie Y et al (2007) A brief review of the ionic conductivity enhancement for selected oxide electrolytes. J Power Sources 172:493–502CrossRefGoogle Scholar
  4. 4.
    Kuharuangrong S (2007) Ionic conductivity of Sm, Gd, Dy and Er-doped ceria. J Power Sources 171:506–510CrossRefGoogle Scholar
  5. 5.
    Mogensen M, Sammes NM, Tompsett GM (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ion 129:63–94CrossRefGoogle Scholar
  6. 6.
    Kežionis A, Šalkus T, Petraitis A, Dudonis J, Laukaitis G, Milčius D et al (2009) Peculiarities of ionic transport of oxygen vacancy conducting superionic ceramics. Lithuanian J Phys 49:317–322CrossRefGoogle Scholar
  7. 7.
    Zha S, Xia C, Meng G (2003) Effect of Gd(Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. J Power Sources 115:44–48CrossRefGoogle Scholar
  8. 8.
    Lee KR, Lee JH, Yoo HI (2014) Grain size effect on the electrical properties of nanocrystalline ceria. J Eur Ceram Soc 34:2363–2370CrossRefGoogle Scholar
  9. 9.
    Reddy K, Karan K (2005) Sinterability Mechanical, Microstructural, and Electrical Properties of Gadolinium-Doped Ceria Electrolyte for Low-Temperature Solid Oxide Fuel Cells. J Electroceram 15:45–56CrossRefGoogle Scholar
  10. 10.
    Öksüzömer MAF, Dönmez G, Sariboğa V, Altinçekiç TG (2013) Microstructure and ionic conductivity properties of gadolinia doped ceria (GdxCe1−xO2−x/2) electrolytes for intermediate temperature SOFCs prepared by the polyol method. Ceram International 39:7305–7315CrossRefGoogle Scholar
  11. 11.
    Jadhav LD, Pawar SH, Chourashiya MG (2007) Effect of sintering temperature on structural and electrical properties of gadolinium doped ceria (Ce0.9Gd0.1O1.95). Bull Mater Sci 30:97–100CrossRefGoogle Scholar
  12. 12.
    Lenka KR, Mahata T, Tyagi AK, Sinha PK (2010) Influence of grain size on the bulk and grain boundary ion conduction behavior in gadolinia-doped ceria. Solid State Ion 181:262–267CrossRefGoogle Scholar
  13. 13.
    Arabacı A, Öksüzömer MF (2012) Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications. Ceram International 38:6509–6515CrossRefGoogle Scholar
  14. 14.
    Kazlauskas S, Kežionis A, Šalkus T, Orliukas AF (2013) Electrical properties of YSZ and CaSZ single crystals. Solid State Ion 231:37–42CrossRefGoogle Scholar
  15. 15.
    Kazlauskas S, Kežionis A, Šalkus T, Orliukas AF (2014) Charge carrier relaxation in solid VO•• conductors. Solid State Ion 262:593–596CrossRefGoogle Scholar
  16. 16.
    Kazlauskas S, Kežionis A, Kazakevičius E, Orliukas AF (2014) Charge carrier relaxation and phase transition in scandium stabilized zirconia ceramics. Electrochim Acta 134:176–181CrossRefGoogle Scholar
  17. 17.
    Huang K, Feng M, Goodenough JB (1998) Synthesis and Electrical Properties of Dense Ce0.9Gd0.1O1.95 Ceramics. J Am Ceram Soc 81:357–362CrossRefGoogle Scholar
  18. 18.
    Chiodelli G, Malavasi L, Massarotti V, Mustarelli P, Quartarone E (2005) Synthesis and characterization of Ce0.8Gd0.2O2−y polycrystalline and thin film materials. Solid State Ion 176:1505–1512CrossRefGoogle Scholar
  19. 19.
    Kežionis A, Butvilas P, Šalkus T, Kazlauskas S, Petrulionis D, Žukauskas T et al (2013) Four-electrode impedance spectrometer for investigation of solid ion conductors. Rev Sci Instrum 84:013902CrossRefGoogle Scholar
  20. 20.
    Kežionis A, Kazakevičius E, Šalkus T, Orliukas AF (2011) Broadband high frequency impedance spectrometer with working temperatures up to 1200 K. Solid State Ion 188:110–113CrossRefGoogle Scholar
  21. 21.
    Tikhonov AN (1963) Regularization of ill-posed problems. DAN SSSR 153:49–52Google Scholar
  22. 22.
    Badwal SPS (1984) Electrical conductivity of single crystal and polycrystalline yttria-stabilized zirconia. J Mater Sci 19:1767–1776CrossRefGoogle Scholar
  23. 23.
    Ngai KL (1998) Evidence of interaction between oxygen ions from conductivity relaxation and quasielastic light scattering data of yttria-stabilized zirconia. Philosophical Mag Part B 77:187–195CrossRefGoogle Scholar
  24. 24.
    Liu AZ, Wang JX, He CR, Miao H, Zhang Y, Wang WG (2013) Synthesis and characterization of Gd0.1Ce0.9O1.95 nanopowder via an acetic–acrylicmethod. Ceram International 39:6229–6235CrossRefGoogle Scholar
  25. 25.
    Maca K, Cihlar J, Castkova K, Zmeskal O, Hadraba H (2007) Sintering of gadolinia-doped ceria prepared by mechanochemical synthesis. J Eur Ceram Soc 27:4345–4348CrossRefGoogle Scholar
  26. 26.
    Jud E, Gauckler L (2005) The Effect of Cobalt Oxide Addition on the Conductivity of Ce0.9Gd0.1O1.95. J Electroceram 15:159–166CrossRefGoogle Scholar
  27. 27.
    Hsieh TH, Ray DT, Fu YP (2013) Co-precipitation synthesis and AC conductivity behavior of gadolinium-doped ceria. Ceram International 39:7967–7973CrossRefGoogle Scholar
  28. 28.
    Van Dijk T, Burggraaf AJ (1981) Grain boundary effects on ionic conductivity in ceramic GdxZr1–xO2–(x/2) solid solutions. Phys Status Solidi (a) 63:229–240CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Saulius Kazlauskas
    • 1
  • Algimantas Kežionis
    • 1
  • Tomas Šalkus
    • 1
  • Antanas Feliksas Orliukas
    • 1
  1. 1.Vilnius UniversityVilniusLithuania

Personalised recommendations