Advertisement

Journal of Materials Science

, Volume 50, Issue 8, pp 3200–3206 | Cite as

Thermal stability of epitaxial cubic-TiN/(Al,Sc)N metal/semiconductor superlattices

  • Jeremy L. Schroeder
  • Bivas Saha
  • Magnus Garbrecht
  • Norbert Schell
  • Timothy D. Sands
  • Jens Birch
Original Paper

Abstract

We report on the thermal stability of epitaxial cubic-TiN/(Al,Sc)N metal/semiconductor superlattices with the rocksalt crystal structure for potential plasmonic, thermoelectric, and hard coating applications. TiN/Al0.72Sc0.28N superlattices were annealed at 950 and 1050 °C for 4, 24, and 120 h, and the thermal stability was characterized by high-energy synchrotron-radiation-based 2D X-ray diffraction, high-resolution (scanning) transmission electron microscopy [HR(S)/TEM], and energy dispersive X-ray spectroscopy (EDX) mapping. The TiN/Al0.72Sc0.28N superlattices were nominally stable for up to 4 h at both 950 and 1050 °C. Further annealing treatments for 24 and 120 h at 950 °C led to severe interdiffusion between the layers and the metastable cubic-Al0.72Sc0.28N layers partially transformed into Al-deficient cubic-(Al,Sc)N and the thermodynamically stable hexagonal wurtzite phase with a nominal composition of AlN (h-AlN). The h-AlN grains displayed two epitaxial variants with respect to c-TiN and cubic-(Al,Sc)N. EDX mapping suggests that scandium has a higher tendency for diffusion in TiN/(Al,Sc)N than titanium or aluminum. Our results indicate that the kinetics of interdiffusion and the cubic-to-hexagonal phase transformation place constraints on the design and implementation of TiN/(Al,Sc)N superlattices for high-temperature applications.

Keywords

Scandium Diffraction Spot Superlattice Reflection Increase Annealing Time Inset Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

J. L. Schroeder and J. Birch acknowledge financial support from Linköping University and the Swedish Research Council (the RÅC Frame Program (2011-6505) and the Linnaeus Grant (LiLi-NFM)). B. Saha and T. D. Sands acknowledge financial support by the National Science Foundation and US Department of Energy (CBET-1048616). The Knut and Alice Wallenberg (KAW) Foundation is acknowledged for the Electron Microscope Laboratory in Linköping. Special thanks to Lina Rogström, Niklas Norrby, and Daniel Ostach for assistance with the synchrotron-radiation measurements.

References

  1. 1.
    Sands T, Palmstrøm CJ, Harbison JP, Keramidas VG, Tabatabaie N, Cheeks TL, Silberberg Y (1990) Stable and epitaxial Metal/III-V semiconductor heterostructures. Mater Sci Rep 5:98–170CrossRefGoogle Scholar
  2. 2.
    Saha B, Saber S, Naik GV, Boltasseva A, Stach EA, Kvam EP, Sands TD (2014) Development of epitaxial AlxSc1-xN for artificially structured metal/semiconductor superlattice metamaterials. Phys Status Solidi B. doi: 10.1002/pssb.201451314
  3. 3.
    Wong MS, Hsiao GY, Yang SY (2000) Preparation and characterization of AlN/ZrN and AlN/TiN nanolaminate coatings. Surf Coat Technol 133:160–165CrossRefGoogle Scholar
  4. 4.
    Naik GV, Saha B, Liu J, Saber SM, Stach EA, Irudayaraj JMK, Sands TD, Shalaev VM, Boltasseva A (2014) Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials. Proc Natl Acad Sci USA 111:7546–7551CrossRefGoogle Scholar
  5. 5.
    Saha B, Lawrence SK, Schroeder JL, Birch J, Bahr DF, Sands TD (2014) Enhanced hardness in epitaxial TiAlScN alloy thin films and rocksalt TiN/(Al, Sc)N superlattices. Appl Phys Lett 105:151904CrossRefGoogle Scholar
  6. 6.
    Guler U, Boltasseva A, Shalaev VM (2014) Refractory plasmonics. Science 344:263–264CrossRefGoogle Scholar
  7. 7.
    Zebarjadi M, Bian ZX, Singh R, Shakouri A, Wortman R, Rawat V, Sands T (2009) Thermoelectric transport in a ZrN/ScN superlattice. J Electron Mater 38:960–963CrossRefGoogle Scholar
  8. 8.
    Shakouri A, Zebarjadi M (2009) Nanoengineered materials for thermoelectric energy conversion. In: Volz S (ed) Thermal nanosystems and nanomaterials. Springer, Berlin, pp 225–299CrossRefGoogle Scholar
  9. 9.
    Norrby N, Johansson MP, M’saoubi R, Oden M (2012) Pressure and temperature effects on the decomposition of arc evaporated Ti0.6Al0.4 N coatings in continuous turning. Surf Coat Technol 209:203–207CrossRefGoogle Scholar
  10. 10.
    Carvalho SR, Silva S, Machado AR, Guimaraes G (2006) Temperature determination at the chip-tool interface using an inverse thermal model considering the tool and tool holder. J Mater Process Technol 179:97–104CrossRefGoogle Scholar
  11. 11.
    Hoglund C, Alling B, Birch J, Beckers M, Persson POA, Baehtz C, Czigany Z, Jensen J, Hultman L (2010) Effects of volume mismatch and electronic structure on the decomposition of ScAlN and TiAlN solid solutions. Phys Rev B 81:224101CrossRefGoogle Scholar
  12. 12.
    Ghafoor N, Johnson LJS, Klenov DO, Demeulemeester J, Desjardins P, Petrov I, Hultman L, Oden M (2013) Nanolabyrinthine ZrAlN thin films by self-organization of interwoven single-crystal cubic and hexagonal phases. APL Mat 1:022105CrossRefGoogle Scholar
  13. 13.
    Chen D, Wang YM, Ma XL (2009) Size-effect on stress behavior of the AlN/TiN film. Acta Mater 57:2576–2582CrossRefGoogle Scholar
  14. 14.
    Deng RP, Muralt P, Gall D (2012) Biaxial texture development in aluminum nitride layers during off-axis sputter deposition. J Vac Sci Technol A 30:051501CrossRefGoogle Scholar
  15. 15.
    Engstrom C, Birch J, Hultman L, Lavoie C, Cabral C, Jordan-Sweet JL, Carlsson JRA (1999) Interdiffusion studies of single crystal TiN/NbN superlattice thin films. J Vac Sci Technol A 17:2920–2927CrossRefGoogle Scholar
  16. 16.
    Setoyama M, Irie M, Ohara H, Tsujioka M, Takeda Y, Nomura T, Kitagawa N (1999) Thermal stability of TiN/AlN superlattices. Thin Solid Films 341:126–131CrossRefGoogle Scholar
  17. 17.
    Kim DG, Seong TY, Baik YJ (2002) Effects of annealing on the microstructures and mechanical properties of UN/A1 N nano-multilayer films prepared by ion-beam assisted deposition. Surf Coat Technol 153:79–83CrossRefGoogle Scholar
  18. 18.
    Barshilia HC, Jain A, Rajam KS (2003) Structure, hardness and thermal stability of nanolayered TiN/CrN multilayer coatings. Vacuum 72:241–248CrossRefGoogle Scholar
  19. 19.
    Barshilia HC, Prakash MS, Jain A, Rajam KS (2005) Structure, hardness and thermal stability of TiAlN and nanolayered TiAlN/CrN multilayer films. Vacuum 77:169–179CrossRefGoogle Scholar
  20. 20.
    Burmistrova P (2012) Microstructure and thermoelectric properties of ScN thin films and metal/ScN superlattices for high-temperature energy conversion. Ph.D. Dissertation, Purdue UniversityGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jeremy L. Schroeder
    • 1
  • Bivas Saha
    • 2
    • 3
  • Magnus Garbrecht
    • 1
  • Norbert Schell
    • 4
  • Timothy D. Sands
    • 5
  • Jens Birch
    • 1
  1. 1.Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM)Linkōping UniversityLinkōpingSweden
  2. 2.School of Materials EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Birck Nanotechnology CenterPurdue UniversityWest LafayetteUSA
  4. 4.Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal ResearchInstitute for Materials ResearchGeesthachtGermany
  5. 5.Bradley Department of Electrical and Computer Engineering and Department of Materials Science and EngineeringVirginia TechBlacksburgUSA

Personalised recommendations