Advertisement

Journal of Materials Science

, Volume 50, Issue 8, pp 3189–3199 | Cite as

Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging

  • Victor Kisonen
  • Kasinee Prakobna
  • Chunlin Xu
  • Arto Salminen
  • Kirsi S. Mikkonen
  • Dimitar Valtakari
  • Patrik Eklund
  • Jukka Seppälä
  • Maija Tenkanen
  • Stefan Willför
Original Paper

Abstract

Nanofibrillated cellulose (NFC)-Norway spruce O-acetyl-galactoglucomannan (GGM) composite films were coated either with a novel succinic ester of GGM or with native GGM. NFC films were made for reference. The succinic ester of GGM was synthesised at low (GGM-Su1) and high (GGM-Su2) degree of substitution to obtain different level of water repellence. GGM and its succinic esters had good affinity with NFC substrate. This made it possible to implement the barrier functionality on the NFC network with the adequate mechanical properties. The coatings further enhanced the already excellent oxygen permeability properties, achieving 0.1 [(cm3 µm)(m2 kPa d)] as the lowest value with the NFC-GGM film double-coated with GGM-Su2. The films demonstrated pronounced stiffness by adding GGM to the NFC, as well as coating of GGM-Su2 on the NFC-GGM films at 0–90 % relative humidity. The films turned out to be impenetrable with grease even at high temperatures. NFC-GGM film with GGM-Su2 coating exhibited hydrophobic characteristics according to the water contact angle measurements. It was shown that adding 5.5 wt% of GGM to a NFC film and further 5.4 wt% of coating of GGM-Su or GGM on the film may highly enhance the feasibility of the biocomposites to be used for food packaging to replace typical oil-based non-biodegradable plastics currently used.

Graphical abstract

Keywords

Contact Angle Composite Film Atom Transfer Radical Polymerization Dynamic Mechanical Analysis Oxygen Permeability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was carried out in framework of the Future Biorefinery Project by the Finnish Funding Agency for Technology and Innovation and Fibic Ltd. This work was part of the activities of the Åbo Akademi Process Chemistry Centre and Bioregs graduate school. This work made use of Aalto University Bioeconomy Facilities. We thank the staff of Metla in Vantaa and Lappeenranta University of Technology for providing the filtrated GGM, Hanna Lindqvist of our laboratory and Maristiina Nurmi of the Laboratory of Paper Coating and Converting for the practical help. The consultation on the concept by Lars Berglund of KTH, is highly appreciated.

References

  1. 1.
    Jayasiri HB, Purushothaman CS, Vennila A (2013) Quantitative analysis of plastic debris on recreational beaches in Mumbai, India. Mar Pollut Bull 77:107–112. doi: 10.1016/j.marpolbul.2013.10.024 CrossRefGoogle Scholar
  2. 2.
    Thamae T, Bailie C (2008) Natural fibre composites, turning waste into useful materials. VDM Verlag Dr Muller Aktiengesellschaft & Co. Kg, pp 1–7Google Scholar
  3. 3.
    Willför S, Sjöholm R, Laine C et al (2003) Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Carbohydr Polym 52:175–187CrossRefGoogle Scholar
  4. 4.
    Song T, Pranovich A, Sumerskiy I, Holmbom B (2008) Extraction of galactoglucomannan from spruce wood with pressurised hot water. Holzforschung 62:659–666. doi: 10.1515/HF.2008.131 CrossRefGoogle Scholar
  5. 5.
    Al Manasrah M, Kallioinen M, Ilvesniemi H, Maenttaeri M (2012) Recovery of galactoglucomannan from wood hydrolysate using regenerated cellulose ultrafiltration membranes. Bioresour Technol 114:375–381. doi: 10.1016/j.biortech.2012.02.014 CrossRefGoogle Scholar
  6. 6.
    Rissanen JV, Grenman H, Xu C et al (2014) Obtaining spruce hemicelluloses of desired molar mass by using pressurized hot water extraction. ChemSusChem 7:2947–2953. doi: 10.1002/cssc.201402282 CrossRefGoogle Scholar
  7. 7.
    Krogell J, Eranen K, Granholm K et al (2014) High-temperature pH measuring during hot-water extraction of hemicelluloses from wood. Ind Crop Prod 61:9–15. doi: 10.1016/j.indcrop.2014.06.046 CrossRefGoogle Scholar
  8. 8.
    Kisonen V, Eklund P, Auer M et al (2012) Hydrophobication and characterisation of O-acetyl-galactoglucomannan for papermaking and barrier applications. Carbohydr Res 352:151–158. doi: 10.1016/j.carres.2012.01.005 CrossRefGoogle Scholar
  9. 9.
    Mikkonen KS, Schmidt J, Vesterinen A-H, Tenkanen M (2013) Crosslinking with ammonium zirconium carbonate improves the formation and properties of spruce galactoglucomannan films. J Mater Sci 48:4205–4213. doi: 10.1007/s10853-013-7233-9 CrossRefGoogle Scholar
  10. 10.
    Oinonen P, Areskogh D, Henriksson G (2013) Enzyme catalyzed cross-linking of spruce galactoglucomannan improves its applicability in barrier films. Carbohydr Polym 95:690–696. doi: 10.1016/j.carbpol.2013.03.016 CrossRefGoogle Scholar
  11. 11.
    Kisonen V, Xu C, Eklund P et al (2014) Cationised O-acetyl galactoglucomannans: synthesis and characterisation. Carbohydr Polym 99:755–764. doi: 10.1016/j.carbpol.2013.09.009 CrossRefGoogle Scholar
  12. 12.
    Lozhechnikova A, Dax D, Vartiainen J et al (2014) Modification of nanofibrillated cellulose using amphiphilic block-structured galactoglucomannans. Carbohydr Polym 110:163–172. doi: 10.1016/j.carbpol.2014.03.087 CrossRefGoogle Scholar
  13. 13.
    Dax D, Eklund P, Hemming J et al (2013) Amphiphilic spruce galactoglucomannan derivatives based on naturally-occurring fatty acids. BioResources 8:3771–3790. doi: 10.15376/biores.8.3.3771-3790 CrossRefGoogle Scholar
  14. 14.
    Mikkonen KS, Stevanic JS, Joly C et al (2011) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose 18:713–726. doi: 10.1007/s10570-011-9524-0 CrossRefGoogle Scholar
  15. 15.
    Trovatti E, Fernandes SCM, Rubatat L et al (2012) Pullulan–nanofibrillated cellulose composite films with improved thermal and mechanical properties. Compos Sci Technol 72:1556–1561. doi: 10.1016/j.compscitech.2012.06.003 CrossRefGoogle Scholar
  16. 16.
    Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85. doi: 10.1007/s10570-008-9244-2 CrossRefGoogle Scholar
  17. 17.
    Besbes I, Vilar MR, Boufi S (2011) Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohydr Polym 86:1198–1206. doi: 10.1016/j.carbpol.2011.06.015 CrossRefGoogle Scholar
  18. 18.
    Okuba K, Fujii T, Yamashita N (2005) Improvement of interfacial adhesion in bamboo polymer composite enhanced with micro-fibrillated cellulose. JSME Int J Ser Solid Mech Mater Eng 48:199–204Google Scholar
  19. 19.
    Zhang Z, Sèbe G, Rentsch D et al (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668. doi: 10.1021/cm5004164 CrossRefGoogle Scholar
  20. 20.
    Xhanari K, Syverud K, Chinga-Carrasco G et al (2011) Structure of nanofibrillated cellulose layers at the o/w interface. J Colloid Interface Sci 356:58–62. doi: 10.1016/j.jcis.2010.12.083 CrossRefGoogle Scholar
  21. 21.
    Vuoti S, Talja R, Johansson L-S et al (2013) Solvent impact on esterification and film formation ability of nanofibrillated cellulose. Cellulose 20:2359–2370. doi: 10.1007/s10570-013-9983-6 CrossRefGoogle Scholar
  22. 22.
    Österberg M, Vartiainen J, Lucenius J et al (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5:4640–4647. doi: 10.1021/am401046x CrossRefGoogle Scholar
  23. 23.
    Zhou Q, Greffe L, Baumann MJ et al (2005) Use of xyloglucan as a molecular anchor for the elaboration of polymers from cellulose surfaces: a general route for the design of biocomposites. Macromolecules 38:3547–3549. doi: 10.1021/ma047712k CrossRefGoogle Scholar
  24. 24.
    Stevanic JS, Mikkonen KS, Xu C et al (2014) Wood cell wall mimicking for composite films of spruce nanofibrillated cellulose with spruce galactoglucomannan and arabinoglucuronoxylan. J Mater Sci 49:5043–5055. doi: 10.1007/s10853-014-8210-7 CrossRefGoogle Scholar
  25. 25.
    Escalante A, Gonçalves A, Bodin A et al (2012) Flexible oxygen barrier films from spruce xylan. Carbohydr Polym 87:2381–2387. doi: 10.1016/j.carbpol.2011.11.003 CrossRefGoogle Scholar
  26. 26.
    Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459. doi: 10.1007/s10086-013-1365-z CrossRefGoogle Scholar
  27. 27.
    Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441. doi: 10.1016/j.eurpolymj.2007.05.038 CrossRefGoogle Scholar
  28. 28.
    Henriksson M, Berglund LA, Isaksson P et al (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585. doi: 10.1021/bm800038n CrossRefGoogle Scholar
  29. 29.
    Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644. doi: 10.1021/bm2008907 CrossRefGoogle Scholar
  30. 30.
    T 454 om-94 Turperntine test for voids in glassine and greaseproof papers (2000)Google Scholar
  31. 31.
    Bollstrom R, Saarinen JJ, Raty J, Toivakka M (2012) Measuring solvent barrier properties of paper. Meas Sci Technol 23:015601. doi: 10.1088/0957-0233/23/1/015601 CrossRefGoogle Scholar
  32. 32.
    Kisonen V, Xu C, Bollström R et al (2014) O-acetyl galactoglucomannan esters for barrier coatings. Cellulose 21:4497–4509. doi: 10.1007/s10570-014-0428-7 CrossRefGoogle Scholar
  33. 33.
    Hannuksela T, Hervé du Penhoat C (2004) NMR structural determination of dissolved O-acetylated galactoglucomannan isolated from spruce thermomechanical pulp. Carbohydr Res 339:301–312. doi: 10.1016/j.carres.2003.10.025 CrossRefGoogle Scholar
  34. 34.
    Ekholm FS, Ardá A, Eklund P et al (2012) Studies related to Norway spruce galactoglucomannans: chemical synthesis, conformation analysis, NMR spectroscopic characterization, and molecular recognition of model compounds. Chemistry 18:14392–14405. doi: 10.1002/chem.201200510 CrossRefGoogle Scholar
  35. 35.
    Yuan Y, Lee TR (2013) Contact angle and wetting properties. In: Bracco G, Holst B (eds) Surface science techniques. Springer, Berlin, Heidelberg, pp 3–34Google Scholar
  36. 36.
    Spiridon I, Teacă C-A, Bodîrlău R, Bercea M (2013) Behavior of cellulose reinforced cross-linked starch composite films made with tartaric acid modified starch microparticles. J Polym Environ 21:431–440. doi: 10.1007/s10924-012-0498-2 CrossRefGoogle Scholar
  37. 37.
    Kwak S-Y, Jung SG, Kim SH (2001) Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films. Environ Sci Technol 35:4334–4340. doi: 10.1021/es010630g CrossRefGoogle Scholar
  38. 38.
    Hartman J, Albertsson A-C, Sjöberg J (2006) Surface- and bulk-modified galactoglucomannan hemicellulose films and film laminates for versatile oxygen barriers. Biomacromolecules 7:1983–1989. doi: 10.1021/bm060129m CrossRefGoogle Scholar
  39. 39.
    Kjellgren H, Gaellstedt M, Engstroem G, Jaernstroem L (2006) Barrier and surface properties of chitosan-coated greaseproof paper. Carbohydr Polym 65:453–460. doi: 10.1016/j.carbpol.2006.02.005 CrossRefGoogle Scholar
  40. 40.
    Mikkonen KS, Heikkinen S, Soovre A et al (2009) Films from oat spelt arabinoxylan plasticized with glycerol and sorbitol. J Appl Polym Sci 114:457–466. doi: 10.1002/app.30513 CrossRefGoogle Scholar
  41. 41.
    Kisonen V, Xu C, Böllstrom R et al (2014) O-acetyl galactoglucomannan esters for barrier coatings. Cellul Dordr Neth 21:4497–4509. doi: 10.1007/s10570-014-0428-7 Google Scholar
  42. 42.
    Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574. doi: 10.1007/s10570-009-9393-y CrossRefGoogle Scholar
  43. 43.
    Aulin C, Karabulut E, Tran A et al (2013) Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties. ACS Appl Mater Interfaces 5:7352–7359. doi: 10.1021/am401700n CrossRefGoogle Scholar
  44. 44.
    Hansen NML, Blomfeldt TOJ, Hedenqvist MS, Plackett DV (2012) Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan. Cellul Dordr Neth 19:2015–2031. doi: 10.1007/s10570-012-9764-7 Google Scholar
  45. 45.
    Mikkonen KS, Tenkanen M (2012) Sustainable food-packaging materials based on future biorefinery products: xylans and mannans. Trends Food Sci Technol 28:90–102. doi: 10.1016/j.tifs.2012.06.012 CrossRefGoogle Scholar
  46. 46.
    Van Tuil R, Fowler P, Lawther M, Weber CJ (2000) Properties of biobased packaging materials. In Biobased packaging materials for the food industry—Status and perspectives. KVL, Frederiksberg, pp 8–33Google Scholar
  47. 47.
    Eronen P, Österberg M, Heikkinen S et al (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr Polym 86:1281–1290. doi: 10.1016/j.carbpol.2011.06.031 CrossRefGoogle Scholar
  48. 48.
    Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromolecules 9:1493–1505. doi: 10.1021/bm800053z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Victor Kisonen
    • 1
  • Kasinee Prakobna
    • 2
  • Chunlin Xu
    • 1
    • 2
  • Arto Salminen
    • 3
  • Kirsi S. Mikkonen
    • 4
  • Dimitar Valtakari
    • 5
  • Patrik Eklund
    • 6
  • Jukka Seppälä
    • 3
  • Maija Tenkanen
    • 4
  • Stefan Willför
    • 1
  1. 1.Laboratory of Wood and Paper Chemistry, Process Chemistry CentreÅbo Akademi UniversityTurkuFinland
  2. 2.Wallenberg Wood Science CentreKTH, Royal Institute of TechnologyStockholmSweden
  3. 3.Biotechnology and Chemical Technology, Polymer TechnologyAalto UniversityEspooFinland
  4. 4.Department of Food and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  5. 5.Laboratory of Paper Coating and ConvertingÅbo Akademi UniversityTurkuFinland
  6. 6.Laboratory of Organic ChemistryÅbo Akademi UniversityTurkuFinland

Personalised recommendations