Journal of Materials Science

, Volume 50, Issue 8, pp 3139–3148 | Cite as

Tunable morphology from 2D to 3D in the formation of hierarchical architectures from a self-assembling dipeptide: thermal-induced morphological transition to 1D nanostructures

  • Pradyot Koley
  • Makoto Sakurai
  • Masakazu Aono
Original Paper


Construction of complex three-dimensional (3D) architectures through hierarchical self-assembly of peptide molecules has become an attractive approach of fabricating multifunctional advanced materials due to their various potential applications in bionanotechnology. This paper describes the tunable formation of flower-like 3D hierarchical architectures of intricate morphology from a simple self-assembling dipeptide phenylalanine–tyrosine with a facile preparative method by applying a range of voltages through a drop of peptide solution. The fine-tuning of voltages and their application time enable to produce morphological changes of the microstructures from 2D to 3D and also control their formation. The morphology has been characterized by the gradual change in the height-to-diameter ratio of the microstructures with change in the applied voltages. Moreover, these microstructures show significant thermal stability over a wide range of temperatures, whereas adequately high temperature promotes the morphological transformation of the microstructures into different types of ultrathin 1D nanostructures such as nanowires, nanofibrils, etc. Furthermore, we have suggested a possible growth model for the fabrication of unique hierarchical architectures through diffusion-limited aggregation mechanism.


Dipeptide Morphological Transformation Morphological Transition Hierarchical Architecture Joule Heating Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by the World Premier International Center (WPI) Initiative on Materials Nanoarchitectonics, MEXT, Japan, and in part by JPSP KAKENHI (24241047).

Supplementary material

10853_2015_8875_MOESM1_ESM.pdf (1.5 mb)
Supplementary material 1 (PDF 1,556 kb)


  1. 1.
    Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421CrossRefGoogle Scholar
  2. 2.
    Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178CrossRefGoogle Scholar
  3. 3.
    Palmer LC, Stupp SI (2008) Molecular self-assembly into one-dimensional nanostructures. Acc Chem Res 41:1674–1684CrossRefGoogle Scholar
  4. 4.
    Gazit E (2010) Bioinspired chemistry: diversity for self-assembly. Nat Chem 2:1010–1011CrossRefGoogle Scholar
  5. 5.
    Ulijn RV, Smith AM (2008) Designing peptide based nanomaterials. Chem Soc Rev 37:664–675CrossRefGoogle Scholar
  6. 6.
    Ball P (1999) The self-made tapestry. Oxford University Press, OxfordGoogle Scholar
  7. 7.
    Sanchez C, Arribart H, Guille MMG (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277–288CrossRefGoogle Scholar
  8. 8.
    Noorduin WL, Grinthal A, Mahadevan L, Aizenberg J (2013) Rationally designed complex, hierarchical microarchitectures. Science 340:832–837CrossRefGoogle Scholar
  9. 9.
    Lehn J-M (2013) Perspectives in chemistry—steps towards complex matter. Angew Chem Int Ed 52:2836–2850CrossRefGoogle Scholar
  10. 10.
    Jeon TY, Jeon HC, Lee SY, Shim TS, Kwon J-D, Park S-G, Yang S-M (2014) 3D hierarchical architectures prepared by single exposure through a highly durable colloidal phase mask. Adv Mater 26:1422–1426CrossRefGoogle Scholar
  11. 11.
    Wang A, Huang J, Yan Y (2014) Hierarchical molecular self-assemblies: construction and advantages. Soft Matter 10:3362–3373CrossRefGoogle Scholar
  12. 12.
    Tirrell DA (1994) Hierarchical structures in biology as a guide for new materials. National Academy Press, Washington, DCGoogle Scholar
  13. 13.
    Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–855CrossRefGoogle Scholar
  14. 14.
    Chu K-H, Xiao R, Wang EN (2010) Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat Mater 9:413–417CrossRefGoogle Scholar
  15. 15.
    Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzl P (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309:275–278CrossRefGoogle Scholar
  16. 16.
    Gansel JK, Thiel M, Rill MS, Decker M, Bade K, Saile V, Freymann G, Linden S, Wegener M (2009) Gold helix photonic metamaterial as broadband circular polarizer. Science 325:1513–1515CrossRefGoogle Scholar
  17. 17.
    Ge J, Lei J, Zare RN (2012) Protein–inorganic hybrid nanoflowers. Nat Nanotechnol 7:428–432CrossRefGoogle Scholar
  18. 18.
    Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355CrossRefGoogle Scholar
  19. 19.
    Kiyonaka S, Sada K, Yoshimura I, Shibkai S, Kato N, Hamachi I (2004) Semi-wet peptide/protein array using supramolecular hydrogel. Nat Mater 3:58–64CrossRefGoogle Scholar
  20. 20.
    Nakanishi T (2010) Supramolecular soft and hard materials based on self-assembly algorithms of alkyl-conjugated fullerenes. Chem Commun 46:3425–3436CrossRefGoogle Scholar
  21. 21.
    Jayawarna V, Ulijn RV (2012) In: Gale PA, Steed JW (eds) Supramolecular chemistry: from molecules to nanomaterials, vol 7. Wiley, Chichester, p 3525–4013Google Scholar
  22. 22.
    Abramovich LA, Gazit E (2014) The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem Soc Rev 43:6881–6893Google Scholar
  23. 23.
    Handelman A, Beker P, Amdursky N, Rosenman G (2012) Physics and engineering of peptide supramolecular nanostructures. Phys Chem Chem Phys 14:6391–6408CrossRefGoogle Scholar
  24. 24.
    Yan X, Zhu P, Li J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39:1877–1890CrossRefGoogle Scholar
  25. 25.
    Zelzer M, Ulijn RV (2010) Next-generation peptide nanomaterials: molecular networks, interfaces and supramolecular functionality. Chem Soc Rev 39:3351–3357CrossRefGoogle Scholar
  26. 26.
    Hadjichristidis N, Tezuka Y, Prez DF (2011) Complex macromolecular architectures: synthesis, characterization, and self-assembly. Wiley, HobokenCrossRefGoogle Scholar
  27. 27.
    Yuran S, Razvag Y, Reches M (2012) Coassembly of aromatic dipeptides into biomolecular necklaces. ACS Nano 6:9559–9566CrossRefGoogle Scholar
  28. 28.
    Su Y, Yan XH, Wang A, Fei JB, Cui Y, He Q, Li JB (2010) A peony-flower-like hierarchical mesocrystal formed by diphenylalanine. J Mater Chem 20:6734–6740CrossRefGoogle Scholar
  29. 29.
    Panciera M, Amorín M, Granja JR (2014) Molecular pom poms from self-assembling α,γ-cyclic peptides. Chem Eur J 20:10260–10265CrossRefGoogle Scholar
  30. 30.
    Mart RJ, Osborne RD, Stevens MM, Ulijn RV (2006) Peptide-based stimuli-responsive biomaterials. Soft Matter 2:822–835CrossRefGoogle Scholar
  31. 31.
    Mason TO, Chirgadze DY, Levin A, Abramovich LA, Gazit E, Knowles TPJ, Buell AK (2014) Expanding the solvent chemical space for self-assembly of dipeptide nanostructures. ACS Nano 8:1243–1253CrossRefGoogle Scholar
  32. 32.
    Koley P, Gayen A, Drew MGB, Mukhopadhyay C, Pramanik A (2012) Design and self-assembly of a leucine–enkephalin analogue in different nanostructures: application of nanovesicles. Small 8:984–990CrossRefGoogle Scholar
  33. 33.
    Koley P, Pramanik A (2012) Multilayer vesicles, tubes, various porous structures and organo gels through the solvent-assisted self-assembly of two modified tripeptides and their different applications. Soft Matter 8:5364–5374CrossRefGoogle Scholar
  34. 34.
    Demirel G, Buyukserin F (2011) Surface-induced self-assembly of dipeptides onto nanotextured surfaces. Langmuir 27:12533–12538CrossRefGoogle Scholar
  35. 35.
    Qin S-Y, Xu S-S, Zhuo R-X, Zhang X-Z (2012) Morphology transformation via pH-triggered self-assembly of peptides. Langmuir 28:2083–2090CrossRefGoogle Scholar
  36. 36.
    Koley P, Pramanik A (2014) pH-sensitive morphological transition from nanowire to nanovesicle of a single amino acid-based water soluble molecule. J Mater Sci 49:2000–2012. doi: 10.1007/s10853-013-7887-3 CrossRefGoogle Scholar
  37. 37.
    Williams RJ, Smith AM, Collins R, Hodson N, Das AK, Ulijn RV (2009) Enzyme-assisted self-assembly under thermodynamic control. Nat Nanotechnol 4:19–24CrossRefGoogle Scholar
  38. 38.
    Wang W, Chau Y (2009) Self-assembled peptide nanorods as building blocks of fractal patterns. Soft Matter 5:4893–4898CrossRefGoogle Scholar
  39. 39.
    Kwak J, Lee S-Y (2013) Enhanced photoluminescence by tyrosine-containing bolaamphiphile self-assembly. Langmuir 29:4477–4484CrossRefGoogle Scholar
  40. 40.
    Ding Y, Li Y, Qin M, Cao Y, Wang W (2013) Photo-cross-linking approach to engineering small tyrosine-containing peptide hydrogels with enhanced mechanical stability. Langmuir 29:13299–13306CrossRefGoogle Scholar
  41. 41.
    Abramovich LA, Reches M, Sedman VL, Allen S, Tendler SJB, Gazit E (2006) Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications. Langmuir 22:1313–1320CrossRefGoogle Scholar
  42. 42.
    Ryu J, Park CB (2010) High stability of self-assembled peptide nanowires against thermal, chemical, and proteolytic attack. Biotechnol Bioeng 105:221–230CrossRefGoogle Scholar
  43. 43.
    Handelman A, Natan A, Rosenman G (2014) Structural and optical properties of short peptides: nanotubes-to-nanofibers phase transformation. J Pept Sci 20:487–493CrossRefGoogle Scholar
  44. 44.
    Semin S, Etteger A, Cattaneo L, Amdursky N, Kulyuk L, Lavrov S, Sigov A, Mishina E, Rosenman G, Rasing T (2014) Strong thermo-induced single and two-photon green luminescence in self-organized peptide microtubes. Small. doi: 10.1002/smll.201401602 Google Scholar
  45. 45.
    Surmacz-Chwedoruk W, Malka I, Bożycki Ł, Nieznańska H, Dzwolak W (2014) On the heat stability of amyloid-based biological activity: insights from thermal degradation of insulin fibrils. PLoS ONE 9:e86320 (1–7)CrossRefGoogle Scholar
  46. 46.
    Sakurai M, Koley P, Aono M (2014) A new approach to molecular self-assembly through formation of dipeptide-based unique architectures by artificial supersaturation. Chem Commun 50:12556–12559CrossRefGoogle Scholar
  47. 47.
    Adams DA (2011) Dipeptide and tripeptide conjugates as low-molecular-weight hydrogelators. Macromol Biosci 11:160–173CrossRefGoogle Scholar
  48. 48.
    Koley P, Pramanik A (2011) Nanostructures from single amino acid-based molecules: stability, fibrillation, encapsulation, and fabrication of silver nanoparticles. Adv Funct Mater 21:4126–4136CrossRefGoogle Scholar
  49. 49.
    Baldwin RL (1986) Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci USA 83:8069–8072CrossRefGoogle Scholar
  50. 50.
    Matsumura M, Becktel WJ, Matthews BW (1988) Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile 3. Nature 334:406–410CrossRefGoogle Scholar
  51. 51.
    de la Rica R, Matsui H (2010) Applications of peptide and protein-based materials in bionanotechnology. Chem Soc Rev 39:3499–3509CrossRefGoogle Scholar
  52. 52.
    Saito Y (1996) Statistical physics of crystal growth. World Scientific, SingaporeCrossRefGoogle Scholar
  53. 53.
    Scheffela A, Poulsena N, Shianb S, Kröger N (2011) Nanopatterned protein microrings from a diatom that direct silica morphogenesis. Proc Natl Acad Sci USA 108:3175–3180CrossRefGoogle Scholar
  54. 54.
    Marshall KE, Robinson EW, Hengel SM, Paša-Tolić L, Roesijadi G (2012) FRET imaging of diatoms expressing a biosilica-localized ribose sensor. PLoS ONE 7:e33771 (1–8)CrossRefGoogle Scholar
  55. 55.
    Wiersma DS (2013) Disordered photonics. Nat Photon 7:188–196CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.International Center for Materials Nanoarchitectonics (WPI MANA)National Institute for Materials Science (NIMS)TsukubaJapan

Personalised recommendations