Journal of Materials Science

, Volume 50, Issue 9, pp 3337–3350 | Cite as

Liquid phase combustion of iron in an oxygen atmosphere

  • Maryse Muller
  • Hazem El-Rabii
  • Rémy Fabbro
Original Paper


In this article, we report an investigation of laser-initiated ignition of pure iron rods, using optical pyrometry, video observations, and analysis of metallographic cross section of quenched burning liquid on copper plates. When ignition occurs, caused by the melting of metal, the combustion takes place in the liquid. Two distinct superposed phases (L1 and L2) are identified in the liquid, according to the known phase diagram of the iron oxide system. Our observations show that the L1 and L2 phases can be either distinct and immiscible or mixing together. The temperature of the transition at which the mixing occurs is around 2350 K. Two mechanisms are proposed to explain the mixing occurring at high temperature: the spontaneous emulsification resulting from a strong decrease of the interfacial tension between L1 and L2 and the reduction of the miscibility gap between them at high temperature. Based on the experimental data of the evolution of the temperature and the video observation of the melt for different ignition conditions, we provide a complete description of the combustion process of iron induced by laser. Eventually, an extrapolation of the iron–oxygen phase diagram, to temperatures higher than 2000 K, is proposed.


Emissivity Interfacial Tension Liquid Iron Spontaneous Emulsification Liquid Iron Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work pertains to the French Government program “Investissements d’Avenir” (LABEX INTERACTIFS, reference ANR-11-LABX-0017-01) and was financially supported by Air Liquide. The authors wish to thank Grigori Ermolaev (Khristianovich Institute of Theoretical and Applied Mechanics) for discussions of various issues considered in this paper.


  1. 1.
    Chung Y, Cramb A (1998) Direct observation of spontaneous emulsification and associated interfacial phenomena at the slag-steel interface. Philos Trans R Soc Lond Ser A 356(1739):981–993CrossRefGoogle Scholar
  2. 2.
    Chung Y, Cramb A (2000) Dynamic and equilibrium interfacial phenomena in liquid steel-slag systems. Metall Mater Trans B 31(5):957–971CrossRefGoogle Scholar
  3. 3.
    Distin P, Whiteway S, Masson C (1971) Solubility of oxygen in liquid iron from 1785 degrees to 1960 degrees C—a new technique for study of slag-metal equilibria. Can Metall Q 10(1):13–18CrossRefGoogle Scholar
  4. 4.
    Dreizin E (2000) Phase changes in metal combustion. Prog Energy Combust Sci 26(1):57–78CrossRefGoogle Scholar
  5. 5.
    Dreizin E, Suslov A, Trunov M (1993) General trends in metal particles heterogeneous combustion. Combust Sci Technol 90(1–4):79–99CrossRefGoogle Scholar
  6. 6.
    Fischer W, Schumacher J (1978) Die sttigungslslichkeit von reineisen an sauerstoff vom schmelzpunkt bis 2046c ermittelt mit dem schwebeschmelzverfahren. Arch Eisenhttenwes 49:431–435Google Scholar
  7. 7.
    Gaye H, Lucas L, Olette M, Riboud P (1984) Metal slag interfacial properties - equilibrium values and dynamic phenomena. Can Metall Q 23(2):179–191 76CrossRefGoogle Scholar
  8. 8.
    Glassman I (1993) The combustion phase of burning metals—comment. Combust Flame 93(3):338–342CrossRefGoogle Scholar
  9. 9.
    Harrison P, Yoffe A (1961) The burning of metals. Proc R Soc A 26lA:357–370CrossRefGoogle Scholar
  10. 10.
    Hirano T, Sato K, Sato Y, Sato J (1983) Prediction of metal fire spread in high pressure oxygen. Combust Sci Technol 32:137–159CrossRefGoogle Scholar
  11. 11.
    Hirano T, Sato Y, Sato K, Sato J (1984) The rate determining process of iron oxidation at combustion in high-pressure oxygen. Oxid Commun 6(1–4):113–124Google Scholar
  12. 12.
    Hirano T, Sato K, Sato J (1985) An analysis of upward fire spread along metal cylinders. J Heat Transf 107:708–710CrossRefGoogle Scholar
  13. 13.
    Jung E, Kim W, Sohn I, Min D (2010) A study on the interfacial tension between solid iron and CaO–SiO2–Mo system. J Mater Sci 45(8):2023–2029CrossRefGoogle Scholar
  14. 14.
    Krishnan S, Yugawa K, Nordine P (1997) Optical properties of liquid nickel and iron. Phys Rev B 55(13):8201–8206CrossRefGoogle Scholar
  15. 15.
    Kubaschewski O, Hopkins B (1962) Oxidation of metals and alloys. Butterworths, LondonGoogle Scholar
  16. 16.
    Kurtz J, Vulcan T, Steinberg T (1996) Emission spectra of burning iron in high-pressure oxygen. Combust Flame 104(4):391–400CrossRefGoogle Scholar
  17. 17.
    Mills KC, Hondros ED, Li ZS (2005) Interfacial phenomena in high temperature processes. J Mater Sci 40(9–10):2403–2409. doi: 10.1007/s10853-005-1966-z CrossRefGoogle Scholar
  18. 18.
    Muller M (2013) ’Etude du processus d’initiation par laser de la combustion d’un alliage métallique sous atmosphère d’oxygène. PhD thesis, ENSMAGoogle Scholar
  19. 19.
    Muller M, El-Rabii H, Fabbro R (2014) Laser ignition of bulk iron, mild steel and stainless steel in oxygen atmospheres. Combust Sci Technol 186(7):953–974CrossRefGoogle Scholar
  20. 20.
    Muller M, Fabbro R, El-Rabii H, Hirano K (2012) Temperature measurement of laser heated metals in highly oxidizing environment using 2D single-band and spectral pyrometry. J Laser Appl 24(2):022006CrossRefGoogle Scholar
  21. 21.
    Ogino K, Hara S, Miwa T, Kimoto S (1984) The effect of oxygen-content in molten iron on the interfacial-tension between molten iron and slag. Trans Iron Steel Inst Jpn 24(7):522–531CrossRefGoogle Scholar
  22. 22.
    Ohtani E, Ringwood A (1984) Composition of the core.2. effect of high-pressure on solubility of feo in molten iron. Earth Planet Sci Lett 71(1):94–103CrossRefGoogle Scholar
  23. 23.
    Ohtani H (1990) Theoretical consideration on the ignition of hot iron in high pressure oxygen. Fire Sci Technol (Noda Jpn) 10(1–2):1–9CrossRefGoogle Scholar
  24. 24.
    Philibert J, Vignes A, Bréchet Y, Combrade P (2002) Métallurgie—du minerai au matériau. Dunod, ParisGoogle Scholar
  25. 25.
    Riboud P, Lucas L (1981) Influence of mass transfer upon surface phenomena in iron and steelmaking. Can Metall Q 20(2):199–208CrossRefGoogle Scholar
  26. 26.
    Sato J, Hirano T (1986) Behavior of fire spreading along high-temperature mild steel and aluminum cylinders in oxygen. Am Soc Test Mater 910:118–134Google Scholar
  27. 27.
    Sato J, Ohtani H, Hirano T (1995) Ignition process of a heated iron block in high-pressure oxygen atmosphere. Combust Flame 100(3):376–383CrossRefGoogle Scholar
  28. 28.
    Sato K, Sato Y, Tsuno T, Tsuno T, Nakamura Y, Hirano T (1982) Metal combustion in high pressure oxygen atmosphere: detailed observation of burning region behaviour by using high-speed photography. In 15th International Congress on High Speed Photography and Photonics, vol 384. p 828–832Google Scholar
  29. 29.
    Steinberg T, Benz F (1991) Iron combustion in microgravity. Am Soc Test Mater 1111:298–312Google Scholar
  30. 30.
    Steinberg T, Kurtz J, Wilson D (1998) The solubility of oxygen in liquid iron oxide during the combustion of iron rods in high-pressure oxygen. Combust Flame 113(1–2):27–37CrossRefGoogle Scholar
  31. 31.
    Steinberg T, Mulholland G, Wilson D (1992) The combustion of iron in high-pressure oxygen. Combust Flame 89(2):221–228CrossRefGoogle Scholar
  32. 32.
    Steinberg T, Wilson D, Benz F (1992) The combustion phase of burning metals. Combust Flame 91(2):200–208CrossRefGoogle Scholar
  33. 33.
    Steinberg T, Wilson D, Benz F (1993) The combustion phase of burning metals—response. Combust Flame 93(3):343–347CrossRefGoogle Scholar
  34. 34.
    Sun H (2006) Reaction rates and swelling phenomenon of Fe–C droplets in FeO bearing slag. ISIJ Int 46(11):1560–1569CrossRefGoogle Scholar
  35. 35.
    Wilson D, Steinberg T, Stolzfus J (1997) Thermodynamics and kinetics of burning iron. Am Soc Test Mater 1319:240–257Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratoire PIMMCNRS/Arts et Métiers ParisTechParisFrance
  2. 2.Air Liquide, CRCDJouy-en-JosasFrance
  3. 3.Institut PprimeCNRS/ENSMAFuturoscope Chasseneuil CedexFrance

Personalised recommendations