Advertisement

Journal of Materials Science

, Volume 50, Issue 12, pp 4160–4173 | Cite as

Influence of Zn interlayer addition on microstructure and mechanical properties of friction stir welded AZ31 Mg alloy

  • R. Z. Xu
  • D. R. Ni
  • Q. Yang
  • C. Z. Liu
  • Z. Y. Ma
Original Paper

Abstract

2.4-mm-thick AZ31 Mg alloy sheets were friction stir spot welded without and with the addition of Zn interlayers ranging from 0.04 to 0.16 mm in thickness. For the joints without Zn interlayers, although the loads of the joints could be increased by changing the end surface geometry and size of the shoulders, the small bonded area and hook defects limited further increase of joint loads. For the joints with Zn interlayers, the Zn interlayer reacted with the Mg substrate, forming a Mg–Zn brazed zone composed of complex Mg–Zn intermetallics and a thin strip of (α-Mg + MgZn) eutectoid structure, thereby increasing the bonded area and reducing the hook defects of joints at the same time. As a result, the maximum joint load increased from 2.7 to 5.2 kN using a 10-mm-diameter concave shoulder with a 0.12-mm-thick Zn interlayer. A thicker interlayer resulted in a significant increase in the thickness of the thin strip in the hook region, and a thinner interlayer led to the formation of more defects due to intense diffusion reactions, thereby reducing the joint loads.

Keywords

MgZn Thin Strip Friction Stir Spot Welding Friction Stir Spot Welding Advance Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was supported by the National R&D Program of China under Grant No. 2011BAE22B05, and the National Natural Science Foundation of China under Grant Nos. 51371179 and 51331008.

References

  1. 1.
    Lathabai S, Painter MJ, Cantin GMD, Tyagi VK (2006) Friction spot joining of an extruded Al-Mg-Si alloy. Scripta Mater 55:899CrossRefGoogle Scholar
  2. 2.
    Gerlich A, Su P, North TH (2005) Tool penetration during friction stir spot welding of Al and Mg alloys. J Mater Sci 40:6473. doi: 10.1007/s10853-005-1568-9 CrossRefGoogle Scholar
  3. 3.
    Bilici MK, Yukler AI, Kurtulmus M (2011) The optimization of welding parameters for friction stir spot welding of high density polyethylene sheets. Mater Des 32:4074CrossRefGoogle Scholar
  4. 4.
    Rodrigues DM, Loureiro A, Leitao C (2009) Influence of friction stir welding parameters on the microstructural and mechanical properties of AA6016-T4 thin welds. Mater Des 30:1913CrossRefGoogle Scholar
  5. 5.
    Patel VK, Bhole SD, Chen DL (2011) Influence of ultrasonic spot welding on microstructure in a magnesium alloy. Scripta Mater 65:911CrossRefGoogle Scholar
  6. 6.
    Gerlich A, Su P, North TH (2005) Friction stir spot welding of Mg-alloys for automotive. In: Neelameggham NR, Kaplan HI, Powell BR (eds) Magnesium technology. TMS, Warrendale, pp 383–388Google Scholar
  7. 7.
    Rao HM, Jordon JB, Barkey ME, Guo YB, Su XM, Badarinarayan H (2013) Influence of structural integrity on fatigue behavior of friction stir spot welded AZ31 Mg alloy. Mater Sci Eng A 564:369CrossRefGoogle Scholar
  8. 8.
    Yin YH, Sun N, North TH, Hu SS (2010) Hook formation and mechanical properties in AZ31 friction stir spot welds. J Mater Process Technol 210:2062CrossRefGoogle Scholar
  9. 9.
    Su P, Gerlich A, North TH, Bendzsak GJ (2006) Material flow during friction stir spot welding. Sci Technol Weld Join 11:61CrossRefGoogle Scholar
  10. 10.
    Gerlich A, Su P, Yamamoto M, North TH (2008) Material flow and intermixing during dissimilar friction stir welding. Sci Technol Weld Join 13:254CrossRefGoogle Scholar
  11. 11.
    Su P, Gerlich A, North TH, Bendzsak GJ (2007) Intermixing in dissimilar friction stir spot welds. Metall Mater Trans A 38:584CrossRefGoogle Scholar
  12. 12.
    Yuan W, Mishra RS, Carlson B, Verma R, Mishra RK (2012) Material flow and micro structural evolution during friction stir spot welding of AZ31 magnesium alloy. Mater Sci Eng A 543:200CrossRefGoogle Scholar
  13. 13.
    Yin YH, Sun N, North TH, Hu SS (2010) Microstructures and mechanical properties in dissimilar AZ91/AZ31 spot welds. Mater Charact 61:1018CrossRefGoogle Scholar
  14. 14.
    Yin YH, Sun N, North TH, Hu SS (2010) Influence of tool design on mechanical properties of AZ31 friction stir spot welds. Sci Technol Weld Join 15:81CrossRefGoogle Scholar
  15. 15.
    Horie S, Shinozaki K, Yamamoto M, Kadoi K, Nakanshin H, North TH (2010) Effects of tool geometry and process conditions on material flow and strength of friction stir spot welded joints. Transact JWRI 39:28Google Scholar
  16. 16.
    Zhang YN, Cao X, Larose S, Wanjara P (2012) Review of tools for friction stir welding and processing. Can Metall Q 51:250CrossRefGoogle Scholar
  17. 17.
    Ni YQ (2012) Study on the bonding-friction stir spot hybrid welding procedure of AZ31 Mg alloy. Dalian Jiaotong University, DalianGoogle Scholar
  18. 18.
    Shen J, Min D, Wang D (2011) Effects of heating process on the microstructures and tensile properties of friction stir spot welded AZ31 magnesium alloy plates. Mater Des 32:5033CrossRefGoogle Scholar
  19. 19.
    Dhanapal A, Boopathy SR, Balasubramanian V (2011) Developing an empirical relationship to predict the corrosion rate of friction stir welded AZ61 magnesium alloy under salt fog environment. Mater Des 32:5066CrossRefGoogle Scholar
  20. 20.
    Wang DA, Lee SC (2007) Microstructures and failure mechanisms of friction stir spot welds of aluminum 6061-T6 sheets. J Mater Process Technol 186:291CrossRefGoogle Scholar
  21. 21.
    Lathabai S, Painter MJ, Cantin GMD, Tyagi VK (2006) Friction spot joining of anextruded Al-Mg-Si alloy. Scripta Mater 55:899CrossRefGoogle Scholar
  22. 22.
    Bozzil S, Etter AL, Baudin T, Klosek V, Kerbiguet JG, Criqui B (2010) Influence of FSSW parameters on fracture mechanisms of 5182 aluminium welds. J Mater Process Technol 210:1429CrossRefGoogle Scholar
  23. 23.
    Liu LM, Wu ZH (2010) Microstructure and interfacial reactions of soldering magnesium alloy AZ31B. Mater Charact 61:13CrossRefGoogle Scholar
  24. 24.
    Ma L, Long WM, Qiao PX, He DY, Li XY (2013) Development of a binary Zn-based solder alloy for joining wrought magnesium alloy AZ31B. J Mater Eng Perform 22:118CrossRefGoogle Scholar
  25. 25.
    Wu H, Song G (2010) Microstructure and properties of brazing joints of magnesium alloy AZ31B. Mater Res Innov 14:160CrossRefGoogle Scholar
  26. 26.
    Clark JB, Zabdyr L, Moser Z (1998) In: Nayebhashemi AA, Clark JB (eds) Phase diagrams of binary magnesium alloys. ASM International, Metals Park p353Google Scholar
  27. 27.
    Ni JF (2012) Precipitation and hardening in magnesium alloys metal. Metall Mater Trans A 43:3891CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • R. Z. Xu
    • 1
    • 2
  • D. R. Ni
    • 1
  • Q. Yang
    • 1
  • C. Z. Liu
    • 2
  • Z. Y. Ma
    • 1
  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.College of Material Science and EngineeringShenyang Aerospace UniversityShenyangChina

Personalised recommendations