Advertisement

Journal of Materials Science

, Volume 50, Issue 6, pp 2480–2490 | Cite as

Engineering the A- and B-sites for upconversion luminescence in Ho- and Yb-codoped filled tetragonal tungsten bronze oxides

  • T. Wei
  • L. Ye
  • C. Z. Zhao
  • W. B. Wang
  • Q. Z. Ma
  • Q. Lv
  • J. M. Liu
Original Paper

Abstract

Filled tetragonal tungsten bronze (FTTB) oxides represent a huge family of materials which exhibit rich electric and magnetic functionalities deserving for comprehensive investigations. Recently, some members of this family have established their significance in efficient upconversion (UC) luminescence upon proper rare-earth species doping, while the signal intensity is yet weak. In this work, the UC luminescence of Ba p Ln6−p Ti8−p Nb2+p O30 codoped by Ho and Yb (BLTNp:Ho–Yb) with different p are studied. The bright UC green emission, red emission, and near-infrared (NIR) emissions, originating from the two-photon energy-transfer process associated with the 5S2 → 5I8, 5F5 → 5I8, and 5S2 → 5I7 transitions of Ho3+ ions, were observed. The luminescence intensity demonstrates remarkable dependence on the A- and B-sites occupation, and the UC green, red, and NIR luminescence can be enhanced for 10, 25, and 10 times, respectively, upon a change of p from 3.5 to 5.0. This dependence is found to be tightly correlated with the crystal field environment, as characterized by the local lattice distortion. This work sheds light onto an alternative strategy to enhance the UC luminescence in this FTTB family.

Keywords

Lattice Distortion NaYF4 Local Lattice Distortion NaGdF4 Rietveld Structural Refinement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully acknowledge financial support from Natural Science Foundation of China (Nos. 51102277, 11234005), and the Tianjin Research Program of Application Foundation and Advanced Technology (No. 14JCQNJC03700).

References

  1. 1.
    Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139CrossRefGoogle Scholar
  2. 2.
    Boyer JC, Cuccia LA, Capobianco JA (2007) Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett 7:847CrossRefGoogle Scholar
  3. 3.
    Dong B, Liu DP, Wang XJ, Yang T, Miao SM, Li CR (2007) Optical thermometry through infrared excited green upconversion emissions in Er3+-Yb3+ codoped Al2O3. Appl Phys Lett 90:181117CrossRefGoogle Scholar
  4. 4.
    Wang F, Han Y, Lim CS, Lu YH, Wang J, Xu J et al (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463:1061CrossRefGoogle Scholar
  5. 5.
    Chen GY, Qiu HL, Prasad PN, Chen XY (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114:5161CrossRefGoogle Scholar
  6. 6.
    Wang J, Deng RR, MacDonald MA, Chen BL, Yuan JK, Wang F et al (2014) Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat Mater 13:157CrossRefGoogle Scholar
  7. 7.
    Chen GY, Liu HC, Somesfalean G, Sheng YQ, Liang HJ, Zhang ZG et al (2008) Enhancement of the upconversion radiation in Y2O3:Er3+ nanocrystals by codoping with Li+ ions. Appl Phys Lett 92:113114CrossRefGoogle Scholar
  8. 8.
    Ramasamy P, Chandra P, Rhee SW, Kim JK (2013) Enhanced upconversion luminescence in NaGdF4:Yb, Er nanocrystals by Fe3+ doping and their application in bioimaging. Nanoscale 5:8711CrossRefGoogle Scholar
  9. 9.
    Zhao CZ, Kong XG, Liu XM, Tu LP, Wu F, Zhang YL et al (2013) Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles. Nanoscale 5:8084CrossRefGoogle Scholar
  10. 10.
    Lei L, Chen DQ, Xu J, Zhang R, Wang YS (2014) Highly intensified upconversion luminescence of Ca2+-doped Yb/Er:NaGdF4 nanocrystals prepared by a solvothermal route. Chem Asian J 9:728CrossRefGoogle Scholar
  11. 11.
    Chen G, Yang C, Prasad P (2013) Nanophotonics and nanochemistry: controlling the excitation dynamics for frequency up- and down-conversion in lanthanide-doped nanoparticles. Accounts Chem Res 46:1474CrossRefGoogle Scholar
  12. 12.
    Shi F, Wang JS, Zhai XS, Zhao D, Qin WP (2011) Facile synthesis of β-NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence. CrystEngComm 13:3782CrossRefGoogle Scholar
  13. 13.
    Cheng Q, Sui JH, Cai W (2012) Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions. Nanoscale 4:779CrossRefGoogle Scholar
  14. 14.
    Levin I, Stennett MC, Miles GC, Woodward DI, West AR, Reaney IM (2006) Coupling between octahedral tilting and ferroelectric order in tetragonal tungsten bronze-structured dielectrics. Appl Phys Lett 89:122908CrossRefGoogle Scholar
  15. 15.
    Zhu XL, Chen XM, Liu XQ, Li XG (2009) Ferroelectric phase transition and low-temperature structure fluctuations in Ba4Nd2Ti4Nb6O30 tungsten bronze ceramics. J Appl Phys 105:124110CrossRefGoogle Scholar
  16. 16.
    Wei T, Wang XD, Zhao CZ, Liu MF, Liu JM (2014) Correlation between upconversion photoluminescence and dielectric response in Ba-substituted (Sr1-xBax)4(La0.85Ho0.025Yb0.125)2Ti4Nb6O30. Appl Phys Lett 104:261908CrossRefGoogle Scholar
  17. 17.
    Wei T, Wang YQ, Zhao CZ, Dong XX, Wang JH (2014) Upconversion photoluminescence and dielectric properties in Er3+ and Yb3+ co-doped Sr4La2Ti4Nb6O30. Mater Lett 128:152–155CrossRefGoogle Scholar
  18. 18.
    Stennett MC, Reaney IM, Miles GC, Woodward DI, West AR, Kirl CA et al (2007) Dielectric and structural studies of Ba2MTi2Nb3O15 (BMTNO15, M = Bi3+, La3+, Nd3+, Sm3+, Gd3+) tetragonal tungsten bronze-structured ceramics. J Appl Phys 101:104114CrossRefGoogle Scholar
  19. 19.
    Li K, Zhu XL, Liu XQ, Chen XM (2013) Re-entrant relaxor behavior of Ba5RTi3Nb7O30 (R = La, Nd, Sm) tungsten bronze ceramics. Appl Phys Lett 102:112912CrossRefGoogle Scholar
  20. 20.
    Zhu XL, Wu SY, Chen XM (2007) Dielectric anomalies in (BaxSr1−x)4Nd2Ti4Nb6O30 ceramics with various radius differences between A1- and A2-site ions. Appl Phys Lett 91:162906CrossRefGoogle Scholar
  21. 21.
    Chi EO, Gandini A, Ok KM, Zhang L, Halasyamani PS (2004) Syntheses, structures, second-harmonic generating, and ferroelectric properties of tungsten bronzes: A6M2M′8O30 (A = Sr2+, Ba2+, or Pb2+; M = Ti4+, Zr4+, or Hf4+; M′ = Nb5+ or Ta5+). Chem Mater 16:3616–3622CrossRefGoogle Scholar
  22. 22.
    Wei T, Liu JM, Zhou QJ, Song QG (2011) Coupling and competition between ferroelectric and antiferroelectric states in Ca-doped Sr0.9−xBa0.1CaxTiO3: multipolar states. Phys Rev B 83:052101CrossRefGoogle Scholar
  23. 23.
    Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Cryst 34:210–213CrossRefGoogle Scholar
  24. 24.
    Larson AC, Von Dreele RB (2000) Los Alamos National Laboratory Report LAUR 86-748Google Scholar
  25. 25.
    Sangeetha NM, Van Veggel FCJM (2009) Lanthanum silicate and lanthanum zirconate nanoparticles co-doped with Ho3+ and Yb3+: matrix-dependent red and green upconversion emissions. J Phys Chem C 113:14702CrossRefGoogle Scholar
  26. 26.
    Ding GJ, Gao F, Wu GH, Bao DH (2011) Bright up-conversion green photoluminescence in Ho3+-Yb3+ co-doped Bi4Ti3O12 ferroelectric thin films. J Appl Phys 109:123101CrossRefGoogle Scholar
  27. 27.
    Chen GY, Yang CH, Aghahadi B, Liang HJ, Liu Y, Li L et al (2007) Ultraviolet-blue upconversion emissions of Ho3+ ions. J Opt Soc Am B 27:1158CrossRefGoogle Scholar
  28. 28.
    Liang HJ, Chen GY, Liu HC, Zhang ZG (2009) Ultraviolet upconversion luminescence enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals induced by tridoping with Li+ ions. J Lumin 129:197CrossRefGoogle Scholar
  29. 29.
    Wei T, Chang Z, Zhou QJ, An DM, Li ZP, Sun FC (2014) Bright green emission in Ho doped Bi1/2Na1/2TiO3 ferroelectric ceramics. Mater Lett 115:129CrossRefGoogle Scholar
  30. 30.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallogr A 32:751CrossRefGoogle Scholar
  31. 31.
    Suyver JF, Aebischer A, Biner D, Gerner P, Grimm J, Heer S et al (2005) Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt Mater 27:1111CrossRefGoogle Scholar
  32. 32.
    Patra A, Friend CS, Kapoor R, Prasad PN (2003) Effect of crystal nature on upconversion luminescence in nanocrystals. Appl Phys Lett 83:284CrossRefGoogle Scholar
  33. 33.
    Sommerdijk JL (1973) Influence of host lattice on the infrared-excited visible luminescence in Yb3+, Er3+-doped fluorides. J Lumin 6:61CrossRefGoogle Scholar
  34. 34.
    Huang TC, Hsieh WF (2009) Er-Yb codoped ferroelectrics for controlling visible upconversion emissions. J Fluoresc 19:511CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • T. Wei
    • 1
    • 2
  • L. Ye
    • 1
  • C. Z. Zhao
    • 3
  • W. B. Wang
    • 1
  • Q. Z. Ma
    • 1
  • Q. Lv
    • 1
  • J. M. Liu
    • 2
  1. 1.College of ScienceCivil Aviation University of ChinaTianjinChina
  2. 2.Laboratory of Solid State MicrostructuresNanjing UniversityNanjingChina
  3. 3.School of Electronics and Information EngineeringTianjin Polytechnics UniversityTianjinChina

Personalised recommendations