Advertisement

Journal of Materials Science

, Volume 50, Issue 5, pp 2167–2177 | Cite as

Formation of annealing twins during primary recrystallization of two low stacking fault energy Ni-based alloys

  • W. Wang
  • S. Lartigue-Korinek
  • F. Brisset
  • A. L. Helbert
  • J. Bourgon
  • T. Baudin
Original Paper

Abstract

First stages of recrystallization are analyzed in low stacking fault energy nickel alloys cold rolled and subsequently annealed at 700 °C for 6 min. These alloys are envisaged as candidate materials for the heat exchanger of very high-temperature reactor that works at 1000 °C. First recrystallized grains show evidence of extensive twinning that is studied by transmission electron microscopy. Specific twinning features such as fivefold twin and microtwins bordered by partial dislocations are revealed. Twin density increases with increasing amounts of prior deformation before annealing. The local crystal orientations are determined at a nanometer scale. It is shown directly that when twinning occurs, the recrystallized area beyond the twin has a lower stored deformation energy. Thus, recrystallization and the associate twinning induce a decrease in the total stored deformation energy.

Keywords

Twin Boundary Stack Fault Energy Partial Dislocation Inverse Pole Figure Annealing Twin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to thank Isabelle DROUELLE, Denis SOLAS and Thierry AUGER for fruitful discussions, and acknowledge the support of Aubert & Duval for providing the material.

References

  1. 1.
    Fullman RL, Fisher JC (1951) Formation of annealing twins during grain growth. J Appl Phys 22:1350–1355CrossRefGoogle Scholar
  2. 2.
    Ashby MF, Harper E (1967) Harvard Rept, Sept. Harvard University, CambridgeGoogle Scholar
  3. 3.
    Gleiter H (1969) The formation of annealing twins. Acta Metall 17:1421–1428CrossRefGoogle Scholar
  4. 4.
    Meyers MA, Murr LE (1978) A model for the formation of annealing twins in fcc metals and alloys. Acta Metall 26:951–962CrossRefGoogle Scholar
  5. 5.
    Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Clarendon Press, OxfordGoogle Scholar
  6. 6.
    Priester L (2013) Grain boundaries: from theory to engineering. Springer, DordrechtCrossRefGoogle Scholar
  7. 7.
    Mahajan S, Pande CS, Imam MA, Rath BB (1997) Formation of annealing twins in fcc crystals. Acta Mater 45:2633–2638CrossRefGoogle Scholar
  8. 8.
    Rath BB, Imam MA, Pande CS (2000) Nucleation and growth of twin interfaces in fcc metals and alloys. Mater Phys Mech 1:61–66Google Scholar
  9. 9.
    Dash S, Brown N (1963) An investigation of the origin and growth of annealing twins. Acta Metall 11:1067–1075CrossRefGoogle Scholar
  10. 10.
    Farkas D, Bringa E, Caro A (2007) Annealing twins in nanocrystalline fcc metals: a molecular dynamics simulation. Phys Rev B 75:184111CrossRefGoogle Scholar
  11. 11.
    Huang P, Dai GQ, Wang F, Xu KW, Li YH (2009) Fivefold annealing twin in nanocrystalline Cu. Appl Phys Lett 95:203101 (1-3)Google Scholar
  12. 12.
    Pande CS, Imam MA, Rath BB (1990) Study of annealing twins in fcc metals and alloys. Metal. Trans A 21:2891–2896CrossRefGoogle Scholar
  13. 13.
    Field DP, Bradford LT, Nowell MM, Lillo TM (2007) The role of annealing twins during recrystallization of Cu. Acta Mater 55:4233–4241CrossRefGoogle Scholar
  14. 14.
    Bair JL, Hatch SL, Field DP (2014) Formation of annealing twin boundaries in nickel. Scripta Mater 81:52–55CrossRefGoogle Scholar
  15. 15.
    Jones AR (1981) Annealing twinning and the nucleation of recrystallization at grain boundaries. J Mater Sci 16:1374–1380. doi: 10.1007/BF01033854 CrossRefGoogle Scholar
  16. 16.
    Wang W, Brisset F, Helbert AL, Solas D, Drouelle I, Mathon MH, Baudin T (2014) Influence of stored energy on twin formation during primary recrystallization. Mat Sci Eng A 589:112–118CrossRefGoogle Scholar
  17. 17.
    Jin Y, Bernacki M, Rohrer GS, Rollett AD, Lin B, Bozzolo N (2013) Formation of annealing twins during recrystallization and grain growth in 304L austenitic stainless steel. Mater Sci Forum 753:113–116CrossRefGoogle Scholar
  18. 18.
    Jin Y, Lin B, Bernacki M, Rohrer GS, Rollett AD, Bozzolo N (2014) Annealing twin development during recrystallization and grain growth in pure nickel. Mat Sci Eng A 597:295–303CrossRefGoogle Scholar
  19. 19.
    Zhao H, Weatherly GC (1990) The formation of multi-domain precipitates in a Ni-W alloy. Acta Metall Mater 38:2253–2260CrossRefGoogle Scholar
  20. 20.
    Rauch EF, Veron M (2005) Coupled microstructural observations and local texture measurements with an automated crystallographic orientation mapping tool attached to a TEM. Materialwiss Werkstofftech 36:552–556CrossRefGoogle Scholar
  21. 21.
    Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, OxfordGoogle Scholar
  22. 22.
    Beck PA, Sperry PR (1950) Strain induced grain boundary migration in purity aluminum. J Appl Phys 21:150–152CrossRefGoogle Scholar
  23. 23.
    Penelle R, Baudin T (2010) Primary recrystallization of Invar, Fe-36% Ni alloy: origin and development of the cubic texture. Adv Eng Mater 12:1047–1052CrossRefGoogle Scholar
  24. 24.
    Cahn JW, Mishin Y (2009) Recrystallization initiated by low-temperature grain boundary motion coupled to stress. Int J Mat Res 100:510–515CrossRefGoogle Scholar
  25. 25.
    Randle V (2004) Twinning-related grain boundary engineering. Acta Mater 52:4067–4081CrossRefGoogle Scholar
  26. 26.
    Melmed AJ, Hayward DO (1959) On the occurrence of fivefold rotational symmetry in metal whiskers. J Chem Phys 31:545–546CrossRefGoogle Scholar
  27. 27.
    Marks LD (1994) Experimental studies of small particle structures. Rep Prog Phys 57:603–649CrossRefGoogle Scholar
  28. 28.
    An XH, Lin QY, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2011) Formation of fivefold deformation twins in an ultrafine-grained copper alloy processed by high-pressure torsion. Scripta Mater 64:249–252CrossRefGoogle Scholar
  29. 29.
    Hofmeister H (2004) Fivefold twined nanoparticles. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology 3th volume. American Scientific Publishers, California, pp 431–452Google Scholar
  30. 30.
    Bringa EM, Farkas D, Caro A, Wang YM, McNaney J, Smith R (2008) Fivefold twin formation during annealing of nanocrystalline Cu. Scripta Mater 59:1267–1270CrossRefGoogle Scholar
  31. 31.
    Zhu YT, Liao XZ, Valiev RZ (2005) Formation mechanism of fivefold deformation twins in nanocrystalline face-centred-cubic metals. Appl Phys Lett 86:103112CrossRefGoogle Scholar
  32. 32.
    Bozzolo N, Souaï N, Logé RE (2012) Evolution of microstructure and twin density during thermomechanical processing in a γ-γ’ nickel-based superalloy. Acta Mater 60:5056–5066CrossRefGoogle Scholar
  33. 33.
    Wright SI, Larsen RJ (2002) Extracting twins from orientation imaging microscopy scan data. J Microsc 205:245–252CrossRefGoogle Scholar
  34. 34.
    Brewer LN, Field DP, Merriman CC (2009) Mapping and assessing plastic deformation using EBSD. In: Schwartz AJ, Kumar M, Adams BL, Field DP (eds) Electron Backscatter diffraction in materials science, 2nd edn. Springer, New York, pp 251–262CrossRefGoogle Scholar
  35. 35.
    Calcagnotto M, Ponge D, Demir E, Raabe D (2010) Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mat Sci Eng A 527:2738–2746CrossRefGoogle Scholar
  36. 36.
    Volovitch P, Baudin T, Penelle R, Caleyo F, Barrallier L (2007) Role of recovery in the recrystallization simulation application to a cold rolled IF-Ti steel and a cold drawn copper wire. Mater Sci Forum 550:453–458CrossRefGoogle Scholar
  37. 37.
    Duparc OH, Couzinié JP, Thibault-Pénisson J, Lartigue-Korinek S, Décamps B, Priester L (2007) Atomic structures of symmetrical and asymmetrical facets in a near Σ = 9{221} tilt grain boundary in copper. Acta Mater 55:1791–1800CrossRefGoogle Scholar
  38. 38.
    Olmsted DL, Foiles SM, Holm EA (2009) Survey of computed grain boundary properties in face-centered cubic metals: I. grain boundary energy. Acta Mater 57:3694–3703CrossRefGoogle Scholar
  39. 39.
    Warrington DH, Boon M (1975) Ordered structures in random grain boundaries; some geometrical probabilities. Acta Metall 23:599–607CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • W. Wang
    • 1
  • S. Lartigue-Korinek
    • 2
  • F. Brisset
    • 1
  • A. L. Helbert
    • 1
  • J. Bourgon
    • 2
  • T. Baudin
    • 1
  1. 1.UMR CNRS 8182, ICMMOUniversité Paris-SudOrsay CedexFrance
  2. 2.UMR CNRS 7182, MCMCInstitut de Chimie et des Matériaux Paris EstThiaisFrance

Personalised recommendations