Journal of Materials Science

, Volume 50, Issue 4, pp 1848–1854 | Cite as

Microwave-hydrothermal synthesis of Co-doped FeS2 as a visible-light photocatalyst

  • Fei Long
  • Jinyun He
  • Mingyue Zhang
  • Xiaoli Wu
  • Shuyi Mo
  • Zhengguang Zou
  • Yecui Zhou
Original Paper


Co-doped FeS2 composites were successfully synthesized through a facile microwave-hydrothermal process. The products were characterized by X-ray diffraction, X-ray Photoelectron Spectroscopy, field emission scanning electron microscope, UV–Vis diffuse reflectance spectra, and Raman spectroscopy. Cobalt doping didn’t change the basic structure of pyrite FeS2. But the spherical FeS2 product changed into some aggregated laminar particles. The Co-doped FeS2 product exhibited higher absorption in visible-light region and the photocatalytic performance was greatly enhanced. The Co0.333Fe0.667S2 product could decompose 48.9 % methylene blue within 210 min, which was 36.5 % higher than that of the pristine FeS2.


Pyrite Methylene Blue Photocatalytic Activity MoS2 FeS2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Project No. 51162005), National High-Tech Research, Development Program of China (863 Program, Project No. 2012AA050704) and Guangxi Natural Science Foundation (2012GXNSFFA060007).


  1. 1.
    Hsiao SC, Hsu CM, Chen SY, Perng YH, Chueh YL, Chen LJ, Chou LH (2012) Facile synthesis and characterization of high temperature phase FeS2 pyrite nanocrystals. Mater Lett 75:152–154CrossRefGoogle Scholar
  2. 2.
    Wang MX, Yue GH, Geng ZR, Qu DM, Yan PX (2007) Solvent-thermal process synthesis of cobalt disulfide nano powder. J Synth Cryst 36:650–652Google Scholar
  3. 3.
    Zhang D, Wu G, Xiang J, Jin J, Cai Y, Li G (2013) Synthesis and electrochemical performance of bud-like FeS2 microspheres as anode materials for rechargeable lithium batteries. Mater Sci Eng B 178:483–488CrossRefGoogle Scholar
  4. 4.
    Ding W, Wang X, Peng HF, Peng Z, Dong B (2013) Effect of Cu-doping on the electrochemical performance of FeS2. Mater Res Bull 48:4704–4710CrossRefGoogle Scholar
  5. 5.
    Nakamura S, Yamamoto A (2001) Electrodeposition of pyrite (FeS2) thin films for photovoltaic cells. Sol Energy Mater Sol Cells 65:79–85CrossRefGoogle Scholar
  6. 6.
    Barnard AS, Russo SP (2007) Shape and thermodynamic stability of pyrite FeS2 nanocrystals and nanorods. J Phys Chem C 111:11742–11746CrossRefGoogle Scholar
  7. 7.
    Thomas B, Ellmer K, Bohne W, Rohrich J, Kunst M, Tributsch H (1999) Photoeffects in cobalt doped pyrite (FeS2) films. Solid State Commun 111:235–240CrossRefGoogle Scholar
  8. 8.
    Feng X, He XM, Pu WH, Jiang CY, Wan CR (2007) Hydrothermal synthesis of FeS2 for lithium batteries. Ionics 13:375–377CrossRefGoogle Scholar
  9. 9.
    Montoroand LA, Rosolen JM (2003) Gelatin/DMSO: a new approach to enhancing the performance of a pyrite electrode in a lithium battery. Solid State Ionics 159:233–240CrossRefGoogle Scholar
  10. 10.
    Ennaoui A, Fiechter S, Goslowsky H, Tributsch H (1986) Potoelectrochemistry of highly quantum efficient single-crystalline n-FeS2 (pyrite). J Electrochem Soc 133:97–106CrossRefGoogle Scholar
  11. 11.
    Thomas B, Ellmer K, Muller M, Hopfner C, Fiechterand S, Tributsch H (1997) Structural and photoelectrical properties of FeS2 (pyrite) thin films grown by MOCVD. J Cryst Growth 170:808–812CrossRefGoogle Scholar
  12. 12.
    Oertel J, Ellmer K, Bohne W, Rohrich J, Tributsch H (1999) Growth of n-type polycrystalline pyrite (FeS2) films by metalorganic chemical vapour deposition and their electrical characterization. J Cryst Growth 198(199):1205–1210CrossRefGoogle Scholar
  13. 13.
    Wan DY, Wang YT, Wang BY, Ma CX, Wei L (2003) Effects of the crystal structure on electrical and optical properties of pyrite FeS2 films prepared by thermally sulfurizing iron films. J Cryst Growth 253:230–238CrossRefGoogle Scholar
  14. 14.
    Wang DW, Wang QH, Wang TM (2010) Controlled growth of pyrite FeS2 crystallites by a facile surfactant-assisted solvothermal method. Cryst Eng Comm 12:755–761CrossRefGoogle Scholar
  15. 15.
    Kim EJ, Batchelor B (2009) Synthesis and characterization of pyrite (FeS2) using microwave irradiation. Mater Res Bull 44:1553–1558CrossRefGoogle Scholar
  16. 16.
    Jiao J, Chen L, Kuang D, Gao W, Feng H, Xia J (2011) Synthesis of FeS2 and Co-doped FeS2 films with the aid of supercritical carbon dioxide and their photoelectrochemical properties. RSC Adv 1:255–261CrossRefGoogle Scholar
  17. 17.
    Ohfuji H, Rickard D (2005) Experimental syntheses of framboids-a review. Earth Sci Rev 71:147–170CrossRefGoogle Scholar
  18. 18.
    Yang H, Huang C, Li H, hi R, Zhang K (2005) Luminescent and photocatalytic properties of cadmium sulfide nanoparticles synthesized via microwave irradiation. Mater Chem Phys 90:155–158CrossRefGoogle Scholar
  19. 19.
    Liao XH, Zhu JJ, Chen HY (2001) Microwave synthesis of nanocrystalline metal sulfides in formaldehyde solution. Mater Sci Eng, B 85:85–89CrossRefGoogle Scholar
  20. 20.
    Zheng GY, Long F, Ma H, Wu Y, Zou Z (2013) Influence of surfactant on the synthesis of pyrite (FeS2). J Synth Cryst 42:149–154Google Scholar
  21. 21.
    Liu S, Li M, Li S, Li H, Yan L (2013) Synthesis and adsorption/photocatalysis performance of pyrite FeS2. Appl Surf Sci 268:213–217CrossRefGoogle Scholar
  22. 22.
    Zhou B, Zhao X, Liu H, Qu J, Huang CP (2010) Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Appl Catal B 99:214–221CrossRefGoogle Scholar
  23. 23.
    Sun S, Chang X, Li Z (2012) Growth study and photocatalytic properties of Co-doped tungsten oxide mesocrystals. Mater Charact 73:130–136CrossRefGoogle Scholar
  24. 24.
    Han JT, Huang YH, Huang W (2006) Solvothermal synthesis and magnetic properties of pyrite C1−xFexS2 with various morphologies. Mater Lett 60:1805–1808CrossRefGoogle Scholar
  25. 25.
    Zhang H, Zhang RG, Wan DY, Wang BY, Wei L (2006) Effect of doping impurities in pyrite films on the optical and electrical properties. Acta Energ Solar Sini 27:423–427Google Scholar
  26. 26.
    Steinhagen C, Harvey TB, Stolle CJ, Harris J, Korgel BA (2012) Pyrite Nanocrystal Solar Cells: Promising, or Fool’s Gold? J Phys Chem Lett 3:2352–2356CrossRefGoogle Scholar
  27. 27.
    Zhu L, Susac D, Teo M, Wong KC, Wong PC, Parsons RR, Bizzotto D, Mitchell KAR, Campbell SA (2008) Investigation of CoS2 based thin films as model catalysts for the oxygen reduction reaction. J Catal 258:235–242CrossRefGoogle Scholar
  28. 28.
    Marcus MA, Andrews MP, Zegenhagen J, Bommannavar AS, Montano P (1983) Structure and vibrations of chemically produced Au55 clusters. Phys Rev B 42:3312–3331CrossRefGoogle Scholar
  29. 29.
    Rockenberger J, Troger L, Kornowski A, Vossmeyer T, Eychmuller A, Feldhaus J, Weller H (1997) EXAFS Studies on the size dependence of structural and dynamic properties of CdS nanoparticles. J Phys Chem B 101:2691–2701CrossRefGoogle Scholar
  30. 30.
    Choi HC, Jung YM, Kim SB (2005) Size effects in the Ramanspectra of TiO2 nanoparticles. Vib Spectrosc 37:33–38CrossRefGoogle Scholar
  31. 31.
    Yue GH, Yan PX, Liu JZ, Fan XY, Zhuo RF (2005) Fabrication, structure, magnetic properties of highly ordered cobalt disulfide nanowire arrays. Appl Phys Lett 87:262505–262510CrossRefGoogle Scholar
  32. 32.
    Xia J, Lu XH, Gao W, Jiao J, Feng H, Chen L (2011) Hydrothermal growth of Sn4+ doped FeS2 cubes on FTO substrates and its photoelectrochemical properties. Electrochim Acta 56:6932–6939CrossRefGoogle Scholar
  33. 33.
    Bai Y, Yeom J, Yang M, Cha S-H, Sun K, Kotov NA (2013) Universal synthesis of single-phase pyrite FeS2 Nanoparticles, Nanowires, and Nanosheets. J Phys Chem C 117:2567–2573CrossRefGoogle Scholar
  34. 34.
    Zhou L, Wang WZ, Liu SW, Zhang L, Xu H, Zhu W (2006) A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. J Mol Catal A 252:120–124CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Fei Long
    • 1
  • Jinyun He
    • 1
  • Mingyue Zhang
    • 1
  • Xiaoli Wu
    • 1
  • Shuyi Mo
    • 1
  • Zhengguang Zou
    • 1
  • Yecui Zhou
    • 2
  1. 1.School of Materials Science and Engineering, Key Laboratory of Nonferrous Materials and New Processing Technology of Ministry of EducationGuilin University of TechnologyGuilinChina
  2. 2.Hubei Province Supervision and Testing Institute For Building Materials Product QualityWuhanChina

Personalised recommendations