Skip to main content
Log in

Microwave-hydrothermal synthesis of Co-doped FeS2 as a visible-light photocatalyst

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Co-doped FeS2 composites were successfully synthesized through a facile microwave-hydrothermal process. The products were characterized by X-ray diffraction, X-ray Photoelectron Spectroscopy, field emission scanning electron microscope, UV–Vis diffuse reflectance spectra, and Raman spectroscopy. Cobalt doping didn’t change the basic structure of pyrite FeS2. But the spherical FeS2 product changed into some aggregated laminar particles. The Co-doped FeS2 product exhibited higher absorption in visible-light region and the photocatalytic performance was greatly enhanced. The Co0.333Fe0.667S2 product could decompose 48.9 % methylene blue within 210 min, which was 36.5 % higher than that of the pristine FeS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hsiao SC, Hsu CM, Chen SY, Perng YH, Chueh YL, Chen LJ, Chou LH (2012) Facile synthesis and characterization of high temperature phase FeS2 pyrite nanocrystals. Mater Lett 75:152–154

    Article  Google Scholar 

  2. Wang MX, Yue GH, Geng ZR, Qu DM, Yan PX (2007) Solvent-thermal process synthesis of cobalt disulfide nano powder. J Synth Cryst 36:650–652

    Google Scholar 

  3. Zhang D, Wu G, Xiang J, Jin J, Cai Y, Li G (2013) Synthesis and electrochemical performance of bud-like FeS2 microspheres as anode materials for rechargeable lithium batteries. Mater Sci Eng B 178:483–488

    Article  Google Scholar 

  4. Ding W, Wang X, Peng HF, Peng Z, Dong B (2013) Effect of Cu-doping on the electrochemical performance of FeS2. Mater Res Bull 48:4704–4710

    Article  Google Scholar 

  5. Nakamura S, Yamamoto A (2001) Electrodeposition of pyrite (FeS2) thin films for photovoltaic cells. Sol Energy Mater Sol Cells 65:79–85

    Article  Google Scholar 

  6. Barnard AS, Russo SP (2007) Shape and thermodynamic stability of pyrite FeS2 nanocrystals and nanorods. J Phys Chem C 111:11742–11746

    Article  Google Scholar 

  7. Thomas B, Ellmer K, Bohne W, Rohrich J, Kunst M, Tributsch H (1999) Photoeffects in cobalt doped pyrite (FeS2) films. Solid State Commun 111:235–240

    Article  Google Scholar 

  8. Feng X, He XM, Pu WH, Jiang CY, Wan CR (2007) Hydrothermal synthesis of FeS2 for lithium batteries. Ionics 13:375–377

    Article  Google Scholar 

  9. Montoroand LA, Rosolen JM (2003) Gelatin/DMSO: a new approach to enhancing the performance of a pyrite electrode in a lithium battery. Solid State Ionics 159:233–240

    Article  Google Scholar 

  10. Ennaoui A, Fiechter S, Goslowsky H, Tributsch H (1986) Potoelectrochemistry of highly quantum efficient single-crystalline n-FeS2 (pyrite). J Electrochem Soc 133:97–106

    Article  Google Scholar 

  11. Thomas B, Ellmer K, Muller M, Hopfner C, Fiechterand S, Tributsch H (1997) Structural and photoelectrical properties of FeS2 (pyrite) thin films grown by MOCVD. J Cryst Growth 170:808–812

    Article  Google Scholar 

  12. Oertel J, Ellmer K, Bohne W, Rohrich J, Tributsch H (1999) Growth of n-type polycrystalline pyrite (FeS2) films by metalorganic chemical vapour deposition and their electrical characterization. J Cryst Growth 198(199):1205–1210

    Article  Google Scholar 

  13. Wan DY, Wang YT, Wang BY, Ma CX, Wei L (2003) Effects of the crystal structure on electrical and optical properties of pyrite FeS2 films prepared by thermally sulfurizing iron films. J Cryst Growth 253:230–238

    Article  Google Scholar 

  14. Wang DW, Wang QH, Wang TM (2010) Controlled growth of pyrite FeS2 crystallites by a facile surfactant-assisted solvothermal method. Cryst Eng Comm 12:755–761

    Article  Google Scholar 

  15. Kim EJ, Batchelor B (2009) Synthesis and characterization of pyrite (FeS2) using microwave irradiation. Mater Res Bull 44:1553–1558

    Article  Google Scholar 

  16. Jiao J, Chen L, Kuang D, Gao W, Feng H, Xia J (2011) Synthesis of FeS2 and Co-doped FeS2 films with the aid of supercritical carbon dioxide and their photoelectrochemical properties. RSC Adv 1:255–261

    Article  Google Scholar 

  17. Ohfuji H, Rickard D (2005) Experimental syntheses of framboids-a review. Earth Sci Rev 71:147–170

    Article  Google Scholar 

  18. Yang H, Huang C, Li H, hi R, Zhang K (2005) Luminescent and photocatalytic properties of cadmium sulfide nanoparticles synthesized via microwave irradiation. Mater Chem Phys 90:155–158

    Article  Google Scholar 

  19. Liao XH, Zhu JJ, Chen HY (2001) Microwave synthesis of nanocrystalline metal sulfides in formaldehyde solution. Mater Sci Eng, B 85:85–89

    Article  Google Scholar 

  20. Zheng GY, Long F, Ma H, Wu Y, Zou Z (2013) Influence of surfactant on the synthesis of pyrite (FeS2). J Synth Cryst 42:149–154

    Google Scholar 

  21. Liu S, Li M, Li S, Li H, Yan L (2013) Synthesis and adsorption/photocatalysis performance of pyrite FeS2. Appl Surf Sci 268:213–217

    Article  Google Scholar 

  22. Zhou B, Zhao X, Liu H, Qu J, Huang CP (2010) Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Appl Catal B 99:214–221

    Article  Google Scholar 

  23. Sun S, Chang X, Li Z (2012) Growth study and photocatalytic properties of Co-doped tungsten oxide mesocrystals. Mater Charact 73:130–136

    Article  Google Scholar 

  24. Han JT, Huang YH, Huang W (2006) Solvothermal synthesis and magnetic properties of pyrite C1−xFexS2 with various morphologies. Mater Lett 60:1805–1808

    Article  Google Scholar 

  25. Zhang H, Zhang RG, Wan DY, Wang BY, Wei L (2006) Effect of doping impurities in pyrite films on the optical and electrical properties. Acta Energ Solar Sini 27:423–427

    Google Scholar 

  26. Steinhagen C, Harvey TB, Stolle CJ, Harris J, Korgel BA (2012) Pyrite Nanocrystal Solar Cells: Promising, or Fool’s Gold? J Phys Chem Lett 3:2352–2356

    Article  Google Scholar 

  27. Zhu L, Susac D, Teo M, Wong KC, Wong PC, Parsons RR, Bizzotto D, Mitchell KAR, Campbell SA (2008) Investigation of CoS2 based thin films as model catalysts for the oxygen reduction reaction. J Catal 258:235–242

    Article  Google Scholar 

  28. Marcus MA, Andrews MP, Zegenhagen J, Bommannavar AS, Montano P (1983) Structure and vibrations of chemically produced Au55 clusters. Phys Rev B 42:3312–3331

    Article  Google Scholar 

  29. Rockenberger J, Troger L, Kornowski A, Vossmeyer T, Eychmuller A, Feldhaus J, Weller H (1997) EXAFS Studies on the size dependence of structural and dynamic properties of CdS nanoparticles. J Phys Chem B 101:2691–2701

    Article  Google Scholar 

  30. Choi HC, Jung YM, Kim SB (2005) Size effects in the Ramanspectra of TiO2 nanoparticles. Vib Spectrosc 37:33–38

    Article  Google Scholar 

  31. Yue GH, Yan PX, Liu JZ, Fan XY, Zhuo RF (2005) Fabrication, structure, magnetic properties of highly ordered cobalt disulfide nanowire arrays. Appl Phys Lett 87:262505–262510

    Article  Google Scholar 

  32. Xia J, Lu XH, Gao W, Jiao J, Feng H, Chen L (2011) Hydrothermal growth of Sn4+ doped FeS2 cubes on FTO substrates and its photoelectrochemical properties. Electrochim Acta 56:6932–6939

    Article  Google Scholar 

  33. Bai Y, Yeom J, Yang M, Cha S-H, Sun K, Kotov NA (2013) Universal synthesis of single-phase pyrite FeS2 Nanoparticles, Nanowires, and Nanosheets. J Phys Chem C 117:2567–2573

    Article  Google Scholar 

  34. Zhou L, Wang WZ, Liu SW, Zhang L, Xu H, Zhu W (2006) A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. J Mol Catal A 252:120–124

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Project No. 51162005), National High-Tech Research, Development Program of China (863 Program, Project No. 2012AA050704) and Guangxi Natural Science Foundation (2012GXNSFFA060007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, F., He, J., Zhang, M. et al. Microwave-hydrothermal synthesis of Co-doped FeS2 as a visible-light photocatalyst. J Mater Sci 50, 1848–1854 (2015). https://doi.org/10.1007/s10853-014-8747-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8747-5

Keywords

Navigation