Journal of Materials Science

, Volume 50, Issue 4, pp 1783–1793 | Cite as

Role of different factors in the glass-forming ability of binary alloys

  • D. V. Louzguine-Luzgin
  • N. Chen
  • A. Yu. Churymov
  • L. V. Louzguina-Luzgina
  • V. I. Polkin
  • L. Battezzati
  • A. R. Yavari
Original Paper


In the present work, we discuss the glass-forming ability of various binary alloys in which the glassy phase was not formed even by melt spinning technique with high cooling rate of the melt up to 1 MK/s (some consisted of partly glassy phase), though by commonly accepted guidelines, these alloys could be as good glass-formers as many other binary glasses. The alloys studied belong to binary systems with multiple eutectics; the constituent elements have a negative enthalpy of mixing, and a significant variability of atomic size differences is observed from system to system. The results indicate the necessity of taking into account simultaneously various factors influencing the glass-forming ability including melt fragility.


Metallic Glass Bulk Metallic Glass Glass Formation Glassy Phase Atomic Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the World Premier International Research Center Initiative (WPI), MEXT, Japan and by the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST « MISiS » (№ К2-2014-013). The authors sincerely thank Daniel Miracle and Kevin Laws for their critical comments.


  1. 1.
    Inoue A (1995) High-strength bulk amorphous alloys with low critical cooling rates. Mater Trans JIM 36:866–875CrossRefGoogle Scholar
  2. 2.
    Greer AL (1995) Metallic glasses. Science 267:1947–1953CrossRefGoogle Scholar
  3. 3.
    Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306CrossRefGoogle Scholar
  4. 4.
    Johnson WL (1999) Bulk glass-forming metallic alloys: science and technology. MRS Bull 24:42–56CrossRefGoogle Scholar
  5. 5.
    Louzguine-Luzgin DV, Inoue A (2013) Bulk metallic glasses. formation, structure, properties, and applications. In: Buschow KHJ (ed) Handbook of magnetic materials. Elsevier, New York, pp 131–171Google Scholar
  6. 6.
    Louzguine-Luzgin DV, Louzguina-Luzgina LV, Ketov SV, Zadorozhnyy VYu, Greer AL (2014) Influence of cyclic loading on the onset of failure in a Zr-based bulk metallic glass. J Mater Sci 49:6716–6721. doi: 10.1007/s10853-014-8276-2 CrossRefGoogle Scholar
  7. 7.
    Louzguine-Luzgin DV, Xie G, Zhang Q, Suryanarayana C, Inoue A (2010) Formation, structure, and crystallization behavior of Cu-based bulk glass-forming alloys. Metall Mater Trans A 41:1664–1669CrossRefGoogle Scholar
  8. 8.
    Louzguine-Luzgin DV, Miracle DB, Louzguina-Luzgina L, Inoue A (2010) Comparative analysis of glass-formation in binary, ternary, and multicomponent alloys. J Appl Phys 108:103511CrossRefGoogle Scholar
  9. 9.
    Louzguine DV, Inoue A (2002) Comparison of the long-term thermal stability of various metallic glasses under continuous heating. Scripta Mater 47:887–891CrossRefGoogle Scholar
  10. 10.
    Louzguine DV, Inoue A (2001) Electronegativity of the constituent rare-earth metals as a factor stabilizing the supercooled liquid region in Al-based metallic glasses. Appl Phys Lett 79:3410–3412CrossRefGoogle Scholar
  11. 11.
    Egami T, Waseda Y (1984) Atomic size effect on the formability of metallic glasses. J Non-Cryst Solids 64:113–134CrossRefGoogle Scholar
  12. 12.
    Egami T (1996) The atomic structure of aluminum based metallic glasses and universal criterion for glass-formation. J Non-Cryst Solids 205–207:575–582CrossRefGoogle Scholar
  13. 13.
    Miracle DB, Senkov ON (2003) Topological criterion for metallic glass formation. Mater Sci Eng A 347:50–58CrossRefGoogle Scholar
  14. 14.
    Miracle DB (2006) The efficient cluster packing model. An atomic structural model for metallic glasses. Acta Mater 54:4317–4336CrossRefGoogle Scholar
  15. 15.
    Sheng HW, Luo WK, Alamgir FM, Bai JM, Ma E (2006) Atomic packing and short-to- medium-range order in metallic glasses. Nature 439:419–425CrossRefGoogle Scholar
  16. 16.
    Tamura K, Endo H (1969) Ferromagnetic Properties of Amorphous Nickel. Phys Lett A 29:52–53CrossRefGoogle Scholar
  17. 17.
    Davies HA (1983) Metallic glass formation. In: Luborsky FE (ed) Amorphous metallic alloys. Butterworths, London, pp 8–25CrossRefGoogle Scholar
  18. 18.
    Louzguine-Luzgin DV, Belosludov R, Saito M, Kawazoe Y, Inoue A (2008) Glass-transition behavior of Ni: Calculation, prediction, and experiment. J Appl Phys 104:123529–1–123529-5CrossRefGoogle Scholar
  19. 19.
    Kim YW, Lin HM, Kelly TF (1989) Amorphous solidification of pure metals in submicron spheres. Acta Metall 37:247–255CrossRefGoogle Scholar
  20. 20.
    Egami T (1997) Universal criterion for metallic glass formation. Mater Sci Eng, A 226–228:261–267CrossRefGoogle Scholar
  21. 21.
    Hobbs D, Hafner J, Spisak D (2003) Understanding the complex metallic element Mn. I. Crystalline and noncollinear magnetic structure of α-Mn. Phys Rev B 68:014407CrossRefGoogle Scholar
  22. 22.
    Louzguine-Luzgin DV, Yavari AR, Vaughan G, Inoue A (2009) Clustered crystalline structures as glassy phase approximants. Intermetallics 17:477–480CrossRefGoogle Scholar
  23. 23.
    Turnbull D, Cohen MH (1961) Free-volume model of the amorphous phase: glass transition. J Chem Phys 34:120–125CrossRefGoogle Scholar
  24. 24.
    Lu ZP, Liu CT (2002) A new glass-forming ability criterion for bulk metallic glasses. Acta Mater 50:3501–3512CrossRefGoogle Scholar
  25. 25.
    Suryanarayana C, Seki I, Inoue A (2009) A critical analysis of the glass-forming ability of alloys. J Non-Cryst Solids 355:355–360CrossRefGoogle Scholar
  26. 26.
    Suryanarayana C, Inoue A (2010) Bulk Metallic Glasses. CRC Press, Boca RatonCrossRefGoogle Scholar
  27. 27.
    Louzguine-Luzgin DV, Setyawan AD, Kato H, Inoue A (2007) Thermal conductivity of an alloy in relation to the observed cooling rate and glass-forming ability. Phil Mag 87:1845–1854CrossRefGoogle Scholar
  28. 28.
    Park ES, Kim DH, Kim WT (2005) Parameter for glass forming ability of ternary alloy systems. Appl Phys Lett 86:061907CrossRefGoogle Scholar
  29. 29.
    Senkov ON, Miracle DB, Mullens HM (2005) Topological criteria for amorphization based on a thermodynamic approach. J Appl Phys 97:103502CrossRefGoogle Scholar
  30. 30.
    Louzguine-Luzgin DV, Miracle DB, Inoue A (2008) Intrinsic and Extrinsic Factors Influencing the Glass-Forming Ability of Alloys. Adv Eng Mater 10:1008–1015CrossRefGoogle Scholar
  31. 31.
    Louzguine-Luzgin DV, Inoue A, Botta WJ (2006) Reduced electronegativity difference as a factor leading to the formation of Al-based glassy alloys with a large supercooled liquid region of 50 K. Appl Phys Lett 88:011911CrossRefGoogle Scholar
  32. 32.
    Louzguine DV, Louzguina LV, Inoue A (2002) Factors influencing glass formation in rapidly solidified Si, Ge–Ni and Si, Ge–Ni–Nd alloys. Appl Phys Lett 80:1556–1558CrossRefGoogle Scholar
  33. 33.
    Miracle DB, Louzguine-Luzgin DV, Louzguina-Luzgina LV, Inoue A (2010) An assessment of binary metallic glasses: correlations between structure, glass forming ability and stability. Int Mater Rev 55:218–256CrossRefGoogle Scholar
  34. 34.
    Battezzati L, Baricco M (1988) An analysis of volume effects in metallic glass formation. J Less-Common Met 145:31–38CrossRefGoogle Scholar
  35. 35.
    Yavari AR (1983) Small volume change on melting as a new criterion for easy formation of metallic glasses. Phys Lett A 95:165–168CrossRefGoogle Scholar
  36. 36.
    Bsenko L (1976) The crystal structure of Hf3Cu8 and Zr3Cu8. Acta Cryst B 32:2220–2224CrossRefGoogle Scholar
  37. 37.
    Fang T, Kennedy SJ, Quan L, Hicks TJ (1992) The structure and paramagnetism of Ni3Nb. J Phys-Condens Matter 4:2405–2409CrossRefGoogle Scholar
  38. 38.
    Zhou DW, Liu JS, Peng P, Chen L, Hu Y (2008) A first-principles study on the structural stability of Al2Ca, Al4Ca and Mg2Ca phases. J Mater Lett 62:206–210CrossRefGoogle Scholar
  39. 39.
    Glimois JL, Forey P, Feron J, Becle C (1981) Structural investigations of the pseudo-binary compounds Ni10−xCuxZr7. J Less-Common Met 78:45–50CrossRefGoogle Scholar
  40. 40.
    Gabathuler JP, White P, Parthé E (1975) Zr14Cu51 and Hf14Cu51 with GdAg3.6 structure type. Acta Cryst B 31:608–610CrossRefGoogle Scholar
  41. 41.
    Mattern N, Schops A, Kuhn U, Acker J, Khvostikova O, Eckert J (2008) Structural behavior of CuxZr100−x metallic glass (x = 35 − 70). J Non-Cryst Solids 354:1054–1060CrossRefGoogle Scholar
  42. 42.
    Gebhardt E, von Erdberg M, Lüty U (1964) Silver-Yttrium binary alloy phase diagram (based on 1964 Gebhardt E.). IMD Spec Rep Ser 10:303–314Google Scholar
  43. 43.
    Steeb S, Godel D, Löhr C (1968) On the structure of the compounds Ag3R.E. (R.E. = Y, La, Ce, Sm, Gd, Dy, Ho, Er). J Less-Common Met 15:137CrossRefGoogle Scholar
  44. 44.
    McMasters OD, Gschneidner KA Jr, Venteicher RF (1970) Crystallography of the silver-rich rare-earth-silver intermetallic compounds. Acta Crystall B 26:1224–1229CrossRefGoogle Scholar
  45. 45.
    Kadomatsu H, Kawanishi Y, Kurisu M, Tokunaga T, Fujiwara H (1988) Structural phase transitions in YCu1−xMx (M = Ni, Ag and Ga). J Less Common Met 141:29–36CrossRefGoogle Scholar
  46. 46.
    Gratz E, Rotter M, Lindbaum A (1993) The influence of the crystal field on the anisotropic thermal expansion in TmCu2. J Phys 5:7955–7958Google Scholar
  47. 47.
    Buschow KHJ, van der Goot AS (1971) Composition and crystal structure of hexagonal Cu-rich rare earth-copper compounds. Acta Cryst. B 27:1085–1088CrossRefGoogle Scholar
  48. 48.
    Miracle DB, Sanders WS, Senkov ON (2003) The influence of efficient atomic packing on the Constitution of metallic glasses. Philos Mag 83:2409–2428CrossRefGoogle Scholar
  49. 49.
    Miracle DB (2004) A structural model for metallic glasses. Nat Mater 3:697–702CrossRefGoogle Scholar
  50. 50.
    Xia L, Li WH, Fang SS, Wei BC, Dong YD (2006) Binary Ni–Nb bulk metallic glasses. J Appl Phys 99:026103–026103-3CrossRefGoogle Scholar
  51. 51.
    Zhang Y, Zhou YJ, Lin JP (2008) Solid solution phase formation rules for multicomponent alloys. Adv Eng Mater 10:534–538CrossRefGoogle Scholar
  52. 52.
    Fang SS, Xiao X, Lei X (2003) Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J Non-Cryst Solids 321:120–125CrossRefGoogle Scholar
  53. 53.
    Takeuchi A, Inoue A (2005) Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46:2817–2829CrossRefGoogle Scholar
  54. 54.
    Guo S, Liu CT (2011) Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Mater Int 21:433–446Google Scholar
  55. 55.
  56. 56.
    Gale WF, Totemeier TC (2004) (eds.), Smithells metals reference book. 8th edn. Elsevier Butterworth-Heinemann Ltd., Oxford, pp 11-28–11-29Google Scholar
  57. 57.
    Ketov SV, Louzguina-Luzgina LV, Churyumov AYu, Solonin AN, Miracle DB, Louzguine-Luzgin DV, Inoue A (2012) Glass-formation and crystallization processes in Ag-Y-Cu alloys. J Non-Cryst Solids 358:1759–1763Google Scholar
  58. 58.
    Satta M, Rizzi P, Baricco M (2009) Glass-formation and hardness of Cu–Y alloys. J Alloys Compd 483:50–53CrossRefGoogle Scholar
  59. 59.
    Carvalho EM, Harris IR (1980) Constitutional and structural studies of the intermetallic phase ZrCu. J Mater Sci 15:1224–1230. doi: 10.1007/BF00551811 CrossRefGoogle Scholar
  60. 60.
    Burlington MA (2004) Smithells metals reference book. In: Gale WF, Totemeier TC (eds) ASM international metals reference book, 8th edn. Elsevier Butterworth-Heinemann Ltd., Oxford, pp 11-271–11-272Google Scholar
  61. 61.
    Miracle DB, Lord EA, Ranganathan S (2006) Candidate atomic cluster configurations in metallic glass structures. Mater Trans 47:1737–1742CrossRefGoogle Scholar
  62. 62.
    Goldschmidt V (1928) Uber atomabstande in metallen. Z Phys Chem 133:397–419Google Scholar
  63. 63.
    Pauling L (1947) Atomic radii and interatomic distances in metals. J Am Chem Soc 69:542–553CrossRefGoogle Scholar
  64. 64.
    Eiblert R, Redinger J, Neckel A (1987) Electronic structure, chemical bonding and spectral properties of the intermetallic compounds FeTi CoTi and NiTi. J Phys F 17:1533CrossRefGoogle Scholar
  65. 65.
    Egami T (1996) Universal criterion for metallic glass formation. J Non-Cryst Solids 205–207:575–582CrossRefGoogle Scholar
  66. 66.
    Egami T, Ojha M, Nicholson DM, Louzguine-Luzgin DV, Chen N, Inoue A (2012) Glass formability and the Al-Au system. Philos Mag 92:655–665CrossRefGoogle Scholar
  67. 67.
    Nurgayanov PP, Chudinov VG (2000) Atomic mechanisms of glass formation in metallic alloys, tendency to glass formation, and structural models. J Glass Phys Chem 26:335–341Google Scholar
  68. 68.
    Louzguine-Luzgin DV, Belosludov R, Yavari AR, Georgarakis K, Vaughan G, Kawazoe Y, Egami T, Inoue A (2011) Structural basis for supercooled liquid fragility established by synchrotron-radiation method and computer simulation. J Appl Phys 110:043519CrossRefGoogle Scholar
  69. 69.
    Blatter A, von Allmen M (1985) Reversible amorphization in laser-quenched titanium alloys. Phys Rev Lett 54:2103CrossRefGoogle Scholar
  70. 70.
    Yavari AR (2005) Solving the hume-rothery eutectic puzzle using miracle glasses. Nat Mater 4:1–2CrossRefGoogle Scholar
  71. 71.
    Sudavtsova VS, Kotova NV (2009) Thermodynamic properties of binary Si–Y (transition metal) alloys powder metallurgy and metal ceramics, 48: 582-587. Translated from Poroshkovaya Metallurgiya 48:115–123Google Scholar
  72. 72.
    Senkov ON, Miracle DB (2001) Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater Res Bull 36:2183–2198CrossRefGoogle Scholar
  73. 73.
    Burlington MA (2004) Smithells metals reference book. In: Gale WF, Totemeier TC (eds) ASM international metals reference book, 8th edn. Elsevier Butterworth-Heinemann Ltd., Oxford UK, pp 4–44Google Scholar
  74. 74.
    Batsanov SS (1994) General and inorganic chemistry: metallic radii of nonmetals. Russ Chem Bull 43:199–201CrossRefGoogle Scholar
  75. 75.
    Louzguine DV, Saito M, Waseda Y, Inoue A (1999) Structural study of amorphous Ge50Al40Cr10 alloy. J Phys Soc Jpn 68:2298–2303CrossRefGoogle Scholar
  76. 76.
    Botta WJ, Pereira FS, Bolfarini C, Kiminami CS, de Oliveira MF (2008) Topological instability and electronegativity effects on the glass-forming ability of metallic alloys. Philos Mag Lett 88:785–791CrossRefGoogle Scholar
  77. 77.
    Yao KF, Chen N (2008) Pd–Si binary bulk metallic glass. Sci China Ser G 51:414–420CrossRefGoogle Scholar
  78. 78.
    Chen N, Yang HA, Caron A, Chen PC, Lin YC, Louzguine-Luzgin DV, Yao KF, Esashi M, Inoue A (2011) Glass-forming ability and thermoplastic formability of a Pd40Ni40Si4P16 glassy alloy. J Mater Sci 46:2091–2096. doi: 10.1007/s10853-010-5043-x CrossRefGoogle Scholar
  79. 79.
    Louzguine DV, Inoue A (1999) The influence of cooling rate on the formation of an amorphous phase in Si-based multicomponent alloys and its thermal stability. Mater Res Bull 34:1165–1172CrossRefGoogle Scholar
  80. 80.
    Bergman C, Chastel R, Gilbert M, Castanet R, Mathieu JC (1980) Short-range order and thermodynamic behaviour of Pd-Si melts. J Phys Colloques 41:591–594CrossRefGoogle Scholar
  81. 81.
    Guo FQ, Poon SJ, Shiflet GJ (2004) CaAl-based bulk metallic glasses with high thermal stability. Appl Phys Lett 84:37–39CrossRefGoogle Scholar
  82. 82.
    Mendeleev D (1889) The periodic law of the chemical elements. J Chem Soc 55:634–656CrossRefGoogle Scholar
  83. 83.
    Winter M (2008) WebElements: the periodic table on the WWW, vol 2007. The University of Sheffield and WebElements Ltd, SheffieldGoogle Scholar
  84. 84.
    Nagel SR, Taue J (1975) Nearly-free-electron approach to the theory of metallic glass alloys. Phys Rev Lett 35:380CrossRefGoogle Scholar
  85. 85.
    Hiiussler P (1983) Interrelations between electronic and ionic structure in metallic glasses. Z Phys B Cond Matt 53:15Google Scholar
  86. 86.
    Louzguine DV, Inoue A (2002) Investigation of structure and properties of the Al–Y–Ni–Co–Cu metallic glasses. J Mater Res 17:1014–1018CrossRefGoogle Scholar
  87. 87.
    Louzguine-Luzgin DV, Inoue A (2005) Structure and transformation behaviour of a rapidly solidified Al–Y–Ni–Co–Pd alloy. J Alloys Compd 399:78–85CrossRefGoogle Scholar
  88. 88.
    Perepezko JH, Hildal K (2008) Metallic glass formation reactions and interfaces. Mater Sci and Eng B 148:171–178CrossRefGoogle Scholar
  89. 89.
    Perepezko JH, Imhoff SD, Hebert RJ (2010) Nanostructure development during devitrification and deformation. J Alloys Compd 495:360–364CrossRefGoogle Scholar
  90. 90.
    Huang Z, Li J, Rao Q, Zhou Y (2008) Thermal stability and primary phase of Al–Ni(Cu)–La amorphous alloys. J Alloys Compd 463:328CrossRefGoogle Scholar
  91. 91.
    Tkatch VI, Rassolov SG, Popov VV, Maksimov VV, Maslov VV, Nosenko VK, Aronin AS, Abrosimova GE, Rybchenko OG (2011) Complex crystallization mode of amorphous/nanocrystalline composite Al86Ni2Co5.8Gd5.7Si0.5. J Non-Cryst Solids 357:163–1628CrossRefGoogle Scholar
  92. 92.
    Wang H, Carter EA (1993) Metal-metal bonding in Engel-Brewer intermetallics: “anomalous” charge transfer in zirconium-platinum (ZrPt3). J Am Chem Soc 115:2357–2362CrossRefGoogle Scholar
  93. 93.
    Louzguine-Luzgin DV (2014) Vitrification and devitrification processes in metallic glasses. J Alloy Compd 586:S2–S8CrossRefGoogle Scholar
  94. 94.
    Ojovan MI (2013) Ordering and structural changes at the glass–liquid transition. J Non-Cryst Solids 382:79–86CrossRefGoogle Scholar
  95. 95.
    Senkov ON (2007) Correlation between fragility and glass-forming ability of metallic alloys. Phys Rev B 76:104202CrossRefGoogle Scholar
  96. 96.
    Uhlmann DR (1972) A kinetic treatment of glass formation. J Non-Cryst Solids 7:337–348CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • D. V. Louzguine-Luzgin
    • 1
  • N. Chen
    • 2
  • A. Yu. Churymov
    • 3
  • L. V. Louzguina-Luzgina
    • 3
  • V. I. Polkin
    • 3
  • L. Battezzati
    • 4
  • A. R. Yavari
    • 5
    • 1
  1. 1.WPI Advanced Institute for Materials ResearchTohoku UniversityAoba-KuJapan
  2. 2.School of Materials Science and EngineeringTsinghua UniversityBeijingPeople’s Republic of China
  3. 3.National University of Science and Technology “MISiS”MoscowRussia
  4. 4.Dipartimento di ChimicaIFM Università di TorinoTurinItaly
  5. 5.SIMAP-CNRSInstitut Polytechnique de GrenobleSaint-Martin-d’HèresFrance

Personalised recommendations