Advertisement

Journal of Materials Science

, Volume 50, Issue 4, pp 1740–1745 | Cite as

Mn substitution-induced revival of the ferroelectric antiferromagnetic phase in Bi1−x Ca x FeO3−x/2 multiferroics

  • V. A. Khomchenko
  • L. C. J. Pereira
  • J. A. Paixão
Original Paper

Abstract

Room-temperature X-ray diffraction, piezoresponse force microscopy, and SQUID magnetometry measurements of the Bi0.9Ca0.1Fe1−y Mn y O3 (0 ≤ y ≤ 0.5) ferromanganites have been carried out to illustrate the effect of B-site substitution on the crystal structure and multiferroic properties of the Ca-doped compound representing an intermediate ferroelectric and weak ferromagnetic phase of the Bi1−x Ca x FeO3−x/2 perovskites. The Mn doping has been shown to restore multiferroic behavior specific to pure BiFeO3. Indeed, the 0.1 ≤ y ≤ 0.4 samples have been found to possess a single-phase rhombohedral structure compatible with the ferroelectric polarization and antiferromagnetism. Further increase of the Mn concentration stabilizes an orthorhombic structure typical of the high-pressure antiferroelectric phase of the BiFe1−y Mn y O3 perovskites. These results, particularly important from the viewpoint of understanding the origin of weak ferromagnetism in the Bi1−x Ca x FeO3−x/2 system, are discussed using a model accounting for the doping-related defect formation.

Keywords

BiFeO3 Rhombohedral Phase Piezoresponse Force Microscopy Multiferroic Property Pure BiFeO3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by funds from FEDER (Programa Operacional Factores de Competitividade COMPETE) and from FCT-Fundação para a Ciência e a Tecnologia under the project PEst-C/FIS/UI0036/2014. Access to TAIL-UC facility funded under QREN-Mais Centro Project ICT_2009_02_012_1890 is gratefully acknowledged.

References

  1. 1.
    Khomskii D (2009) Classifying multiferroics: mechanisms and effects. Physics 2(20):1–8Google Scholar
  2. 2.
    Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485CrossRefGoogle Scholar
  3. 3.
    Yang C-H, Kan D, Takeuchi I, Nagarajan V, Seidel J (2012) Doping BiFeO3: approaches and enhanced functionality. Phys Chem Chem Phys 14:15953–15962CrossRefGoogle Scholar
  4. 4.
    Kubel F, Schmid H (1990) Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Cryst B 46:698–702CrossRefGoogle Scholar
  5. 5.
    Lebeugle D, Colson D, Forget A, Viret M (2007) Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl Phys Lett 91:022907CrossRefGoogle Scholar
  6. 6.
    Zvezdin AK, Pyatakov AP (2009) Flexomagnetoelectric effect in bismuth ferrite. Phys Status Solidi B 246:1956–1960CrossRefGoogle Scholar
  7. 7.
    Sosnowska I, Peterlin-Neumaier T, Steichele E (1982) Spiral magnetic ordering in bismuth ferrite. J. Phys. C 15:4835–4846CrossRefGoogle Scholar
  8. 8.
    Bhattacharjee S, Tripathi S, Pandey D (2007) Morphotropic phase boundary in (1−x)BiFeO3xPbTiO3: phase coexistence region and unusually large tetragonality. Appl Phys Lett 91:042903CrossRefGoogle Scholar
  9. 9.
    Singh A, Pandey V, Kotnala RK, Pandey D (2008) Direct evidence for multiferroic magnetoelectric coupling in 0.9BiFeO3–0.1BaTiO3. Phys Rev Lett 101:247602CrossRefGoogle Scholar
  10. 10.
    Kumar P, Kar M (2014) Tuning of net magnetic moment in BiFeO3 multiferroics by co-substitution of Nd and Mn. Phys B 448:90–95CrossRefGoogle Scholar
  11. 11.
    Kumar P, Kar M (2014) Effect of structural transition on magnetic and optical properties of Ca and Ti co-substituted BiFeO3 ceramics. J Alloy Compd 584:566–572CrossRefGoogle Scholar
  12. 12.
    Troyanchuk IO, Karpinsky DV, Bushinsky MV, Khomchenko VA, Kakazei GN, Araujo JP, Tovar M, Sikolenko V, Efimov V, Kholkin AL (2011) Isothermal structural transitions, magnetization and large piezoelectric response in Bi1−xLaxFeO3 perovskites. Phys Rev B 83:054109CrossRefGoogle Scholar
  13. 13.
    Khomchenko VA, Troyanchuk IO, Karpinsky DV, Paixão JA (2012) Structural and magnetic phase transitions in Bi1−xPrxFeO3 perovskites. J Mater Sci 47:1578–1581. doi: 10.1007/s10853-011-6040-4 CrossRefGoogle Scholar
  14. 14.
    Levin I, Karimi S, Provenzano V, Dennis CL, Wu H, Comyn TP, Stevenson TJ, Smith RI, Reaney IM (2010) Reorientation of magnetic dipoles at the antiferroelectric-paraelectric phase transition of Bi1−xNdxFeO3 (0.15 ≤ x ≤ 0.25). Phys Rev B 81:020103CrossRefGoogle Scholar
  15. 15.
    Selbach SM, Tybell T, Einarsrud M-A, Grande T (2009) Structure and properties of multiferroic oxygen hyperstoichiometric BiFe1−xMnxO3+δ. Chem Mater 21:5176–5186CrossRefGoogle Scholar
  16. 16.
    Belik AA, Abakumov AM, Tsirlin AA, Hadermann J, Kim J, Van Tendeloo G, Takayama-Muromachi E (2011) Structure and magnetic properties of BiFe0.75Mn0.25O3 perovskite prepared at ambient and high pressure. Chem Mater 23:4505–4514CrossRefGoogle Scholar
  17. 17.
    Khomchenko VA, Troyanchuk IO, Kovetskaya MI, Kopcewicz M, Paixão JA (2012) Effect of Mn substitution on crystal structure and magnetic properties of Bi1−xPrxFeO3 multiferroics. J Phys D Appl Phys 45:045302CrossRefGoogle Scholar
  18. 18.
    Khomchenko VA, Karpinsky DV, Pereira LCJ, Kholkin AL, Paixão JA (2013) Mn substitution-modified polar phase in the Bi1−xNdxFeO3 multiferroics. J Appl Phys 113:214112CrossRefGoogle Scholar
  19. 19.
    Troyanchuk IO, Karpinsky DV, Bushinsky MV, Kovetskaya MI, Efimova EA, Eremenko VV (2011) Morphotropic phase boundary, weak ferromagnetism, and strong piezoelectric effect in Bi1−xCaxFeO3−x/2 compounds. JETP 113:1025–1031CrossRefGoogle Scholar
  20. 20.
    Khomchenko VA, Troyanchuk IO, Többens DM, Sikolenko V, Paixão JA (2013) Composition- and temperature-driven structural transitions in Bi1−xCaxFeO3 multiferroics: a neutron diffraction study. J Phys Condens Matter 25:135902CrossRefGoogle Scholar
  21. 21.
    Yang C-H, Seidel J, Kim SY, Rossen PB, Yu P, Gajek M, Chu YH, Martin LW, Holcomb MB, He Q, Maksymovych P, Balke N, Kalinin SV, Baddorf AP, Basu SR, Scullin ML, Ramesh R (2009) Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat Mater 8:485–493CrossRefGoogle Scholar
  22. 22.
    Seidel J, Luo W, Suresha SJ, Nguyen P-K, Lee AS, Kim S-Y, Yang C-H, Pennycook SJ, Pantelides ST, Scott JF, Ramesh R (2012) Prominent electrochromism through vacancy-order melting in a complex oxide. Nat Commun 3:799CrossRefGoogle Scholar
  23. 23.
    Ikeda-Ohno A, Lim JS, Ohkochi T, Yang C-H, Seidel J (2014) Investigation of continuous changes in the electric-field-induced electronic state in Bi1−xCaxFeO3-δ. Phys Chem Chem Phys 16:17412–17416CrossRefGoogle Scholar
  24. 24.
    Le Bail A, Duroy H, Fourquet JL (1988) Ab-initio structure determination of LiSbWO6 by X-Ray powder diffraction. Mat Res Bull 23:447–452CrossRefGoogle Scholar
  25. 25.
    Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 192:55–69CrossRefGoogle Scholar
  26. 26.
    Chen W, Williams AJ, Ortega-San-Martin L, Li M, Sinclair DC, Zhou W, Attfield JP (2009) Robust antiferromagnetism and structural disorder in BixCa1−xFeO3 perovskites. Chem Mater 21:2085–2093CrossRefGoogle Scholar
  27. 27.
    Schiemer J, Withers R, Norén L, Liu Y, Bourgeois L, Stewart G (2009) Detailed phase analysis and crystal structure investigation of a Bi1−xCaxFeO3−x/2 perovskite-related solid solution phase and selected property measurements thereof. Chem Mater 21:4223–4232CrossRefGoogle Scholar
  28. 28.
    Tzankov D, Kovacheva D, Krezhov K, Puźniak R, Wiśniewski A, Sváb E, Mikhov M (2005) Magnetic and transport properties of Bi0.5Ca0.5FexMn1−xO3 (0 ≤ x ≤ 0.6). J Phys Condens Matter 17:4319–4332CrossRefGoogle Scholar
  29. 29.
    Troyanchuk IO, Karpinskii DV, Bushinskii MV, Chobot AN, Pushkarev NV, Prohnenko O, Kopcewicz M, Szymczak R (2009) Crystal and magnetic structures of the Bi1−xSrxFeO3-δ and Bi1−xAxFe1−xMnxO3 (A = Sr, Ca) solid solutions. Crystallogr Rep 54:1172–1178CrossRefGoogle Scholar
  30. 30.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767CrossRefGoogle Scholar
  31. 31.
    Kozlenko DP, Belik AA, Belushkin AV, Lukin EV, Marshall WG, Savenko BN, Takayama-Muromachi E (2011) Antipolar phase in multiferroic BiFeO3 at high pressure. Phys Rev B 84:094108CrossRefGoogle Scholar
  32. 32.
    Khomchenko VA, Pereira LCJ, Paixão JA (2014) Structural and magnetic phase transitions in Bi1−xNdxFe1−xMnxO3 multiferroics. J Appl Phys 115:034102CrossRefGoogle Scholar
  33. 33.
    Khomchenko VA, Pereira LCJ, Paixão JA (2014) Weak ferromagnetism and nanodimensional ferroelectric domain structure stabilized in the polar phase of Bi1−xNdxFeO3 multiferroics via Ti doping. J Appl Phys 115:164101CrossRefGoogle Scholar
  34. 34.
    Azuma M, Kanda H, Belik AA, Shimakawa Y, Takano M (2007) Magnetic and structural properties of BiFe1−xMnxO3. J Magn Magn Mater 310:1177–1179CrossRefGoogle Scholar
  35. 35.
    Mandal P, Sundaresan A, Rao CNR, Iyo A, Shirage PM, Tanaka Y, Simon C, Pralong V, Lebedev OI, Caignaert V, Raveau B (2010) Temperature-induced magnetization reversal in BiFe0.5Mn0.5O3 synthesized at high pressure. Phys Rev B 82:100416CrossRefGoogle Scholar
  36. 36.
    Yin LH, Sun YP, Zhang FH, Wu WB, Luo X, Zhu XB, Yang ZR, Dai JM, Song WH, Zhang RL (2009) Magnetic and electrical properties of Bi0.8Ca0.2Fe1−xMnxO3 (0 ≤ x ≤ 0.5). J Alloys Compd 488:254–259CrossRefGoogle Scholar
  37. 37.
    Sardar K, Hong J, Catalan G, Biswas PK, Lees MR, Walton RI, Scott JF, Redfern SAT (2012) Structural, spectroscopic, magnetic and electrical characterization of Ca-doped polycrystalline bismuth ferrite, Bi1−xCaxFeO3−x/2 (x ≤ 0.1). J Phys Condens Matter 24:045905CrossRefGoogle Scholar
  38. 38.
    Schiemer JA, Withers RL, Liu Y, Carpenter MA (2013) Ca-doping of BiFeO3: the role of strain in determining coupling between ferroelectric displacements, magnetic moments, octahedral tilting, and oxygen-vacancy ordering. Chem Mater 25:4436–4446CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. A. Khomchenko
    • 1
  • L. C. J. Pereira
    • 2
  • J. A. Paixão
    • 1
  1. 1.CEMDRX/Department of PhysicsUniversity of CoimbraCoimbraPortugal
  2. 2.Unidade de Ciências Químicas e Radiofarmacêuticas, IST/CTN, Instituto Superior TécnicoUniversidade Técnica de Lisboa/CFMCULSacavémPortugal

Personalised recommendations