Journal of Materials Science

, Volume 50, Issue 3, pp 1427–1434 | Cite as

Effect of copper content on the synthesis and properties of (Mg4−xCux)Al2OH12CO3, nH2O layered double hydroxides

  • Mourad Intissar
  • Alain Seron
  • Fabien Giovannelli
  • Cécile Autret
  • Mikael Motelica-Heino
  • Fabian Delorme
Original Paper


In this paper, the substitution of Mg by Cu on the synthesis and properties of (Mg4−xCux)Al2OH12CO3, nH2O LDHs has been studied. Samples have been synthesized by the coprecipitation method using varying pH method. Physicochemical characterization of the obtained samples was performed by a combination of techniques such as X-ray diffraction, SEM, BET-specific surface area, UV–Visible spectrometry, EPR spectrometry, and thermogravimetric analysis. For all the syntheses, whatever the Mg/Cu ratio, a single phase was obtained. For low copper contents (x < 2.6), the single phase is a rhombohedral LDH. For higher copper contents, a symmetry decrease was observed and the layered hydroxide compound is monoclinic, due to distorted Cu(OH)2 octahedra by Jahn–Teller effect. Additionally, thermal stability of the compounds decreases when Cu content increases. Samples with the monoclinic cell do not show any affinity for nitrates and an even higher affinity for carbonates compared to Mg4Al2-LDH. For the samples with the LDH structure, the captured nitrate content increases as the copper content increases but remains limited. All the samples also lead to amorphous mixed oxide nanoparticles when heated at moderate temperature.


Electron Spin Resonance Copper Content Layered Double Hydroxide Brucite Teller Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Miyata S (1983) Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner 31:305–311CrossRefGoogle Scholar
  2. 2.
    Reichle WT (1986) Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid States Ionics 22:135–141CrossRefGoogle Scholar
  3. 3.
    Cavani F, Trifiro F, Vaccari A (1991) Hydrotalcite-type anionic clays : preparation, properties and applications. Catal Today 11:173–301CrossRefGoogle Scholar
  4. 4.
    You Y, Vance GF, Zhao H (2001) Selenium adsorption on Mg-Al and Zn-Al layered double hydroxides. Appl Clay Sci 20:13–25CrossRefGoogle Scholar
  5. 5.
    Seida Y, Nakano Y (2002) Removal of phosphate by layered double hydroxides containing iron. Water Res 36:1306–1312CrossRefGoogle Scholar
  6. 6.
    Delorme F, Seron A, Gautier A, Crouzet C (2007) Comparison of the fluoride, arsenate and nitrate anions water depollution potential of a calcined quintinite, a layered double hydroxide compound. J Mater Sci 42:5799–5804. doi: 10.1007/s10853-006-0752-x CrossRefGoogle Scholar
  7. 7.
    Delorme F, Seron A (2012) Anionic depollution by layered hydroxides. In: Carillo AC, Griego DA (eds) Hydroxides: synthesis. Types and Applications, Novapublishers, New York, pp 169–194Google Scholar
  8. 8.
    Paikaray S, Hendry MJ, Essilfie-Dughan J (2013) Controls on arsenate, molybdate, and selenate uptake by hydrotalcite-like layered double hydroxides. Chem Geol 345:130–138CrossRefGoogle Scholar
  9. 9.
    Tichit D, Lhouty MH, Guida A, Chiche BH, Figueras F, Auroux A, Bartalini D, Garrone E (1995) Textural properties and catalytic activity of hydrotalcites. J Catal 151:50–59CrossRefGoogle Scholar
  10. 10.
    Kagunya W, Hassan Z, Jones W (1996) Catalytic properties of layered double hydroxides and their calcined derivatives. Inorg Chem 35:5970–5974CrossRefGoogle Scholar
  11. 11.
    Vaccari A (1998) Preparation and catalytic properties of cationic and anionic clays. Catal Today 41:53–71CrossRefGoogle Scholar
  12. 12.
    Xu ZP, Zhang J, Adebajo MO, Zhang H, Zhou C (2011) Catalytic applications of layered double hydroxides and derivatives. Appl Clay Sci 53:139–150CrossRefGoogle Scholar
  13. 13.
    Moroz T, Razvorotneva L, Grigorieva T, Mazurov M, Arkhipenko D, Prugov V (2001) Formation of spinel from hydrotalcites-like minerals and destruction of chromite implanted by inorganic salts. Appl Clay Sci 18:29–36CrossRefGoogle Scholar
  14. 14.
    Delorme F, Fernandez Martin C, Marudhachalam P, Guzman G, Ovono Ovono D, Fraboulet O (2012) Synthesis of thermoelectric Ca3Co4O9 ceramics with high ZT values from a CoIICoIII-Layered Double Hydroxide precursor. Mater Res Bull 47:3287–3291CrossRefGoogle Scholar
  15. 15.
    Choy J-H (2004) Intercalative route to heterostructured nanohybrid. J Phys Chem Solids 65:373–383CrossRefGoogle Scholar
  16. 16.
    Choy J-H, Choi S-J, Oh J-M, Park T (2007) Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci 36:122–132CrossRefGoogle Scholar
  17. 17.
    Rives V, Del Arco M, Martin C (2013) Layered double hydroxides as drug carriers and for controlled release of non-steroidal antiinflammatory drugs (NSAIDs): a review. J Control Release 169:28–39CrossRefGoogle Scholar
  18. 18.
    Rives V (ed) (2001) Layered double hydroxides: present and future. NovaSciences Publishers, New York, pp 1–499Google Scholar
  19. 19.
    Duan X, Evans DG (eds) (2006) Layered Double Hydroxides; Structure and Bonding 119. Springer, Berlin, pp 1–234Google Scholar
  20. 20.
    Yun SK, Pinnavaia TJ (1995) Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides. Chem Mater 7:348–354CrossRefGoogle Scholar
  21. 21.
    Crepaldi EL, Pavan PC, Valim JB (2000) Comparative study of the coprecipitation methods for the preparation of Layered Double Hydroxides. J Braz Chem Soc 11:1–18CrossRefGoogle Scholar
  22. 22.
    Intissar M, Segni R, Payen C, Besse J-P, Leroux F (2002) Trivalent cation substitution effect into layered double hydroxides Co2Fey Al1−y(OH)6Cl·nH2O: study of the local order: ionic conductivity and magnetic properties. J Solid State Chem 167:508–516Google Scholar
  23. 23.
    Giovannelli F, Zaghrioui M, Autret-Lambert C, Delorme F, Seron A, Chartier T, Pignon B (2012) Magnetic properties of Ni(II)-Mn(III) LDHs. Mater Chem Phys 137:55–60CrossRefGoogle Scholar
  24. 24.
    Boclair JW, Braterman PS (1999) Layered double hydroxide stability. 1. Relative stabilities of layered double hydroxides and their simple counterparts. Chem Mater 11:298–302CrossRefGoogle Scholar
  25. 25.
    Seron A, Delorme F (2008) Synthesis of layered double hydroxides (LDHs) with varying pH: a valuable contribution to the study of Mg/Al LDH formation mechanism. J Phys Chem Solids 69:1088–1090CrossRefGoogle Scholar
  26. 26.
    Delorme F, Seron A, Vergnaud B, Galle-Cavalloni P, Jean-Prost V, Manguin J (2013) Evidence of the influence of the cationic composition on the anionic affinity of layered double hydroxides. J Mater Sci 48:5273–5279. doi: 10.1007/s10853-013-7318-5 CrossRefGoogle Scholar
  27. 27.
    Mascolo G (1995) Synthesis of anionic clays by hydrothermal crystallisation of amorphous precursors. Appl Clay Sci 10:21–30CrossRefGoogle Scholar
  28. 28.
    Prinetto F, Ghiotti G, Graffin P, Tichit D (2000) Synthesis and characterization of sol-gel Mg/Al and Ni/Al layered double hydroxides and comparison with co-precipitated samples. Microporous Mesoporous Mater 39:229–247CrossRefGoogle Scholar
  29. 29.
    Bookin AS, Drits VA (1993) Polytype diversity of the hydrotalcite-like minerals. I. Possible polytypes and their diffraction features. Clays Clay Miner 41:551–557CrossRefGoogle Scholar
  30. 30.
    Bookin AS, Cherkashin VI, Drits VA (1993) Polytype diversity of the hydrotalcite-like minerals. II. Determination of the polytypes of experimentally studied varieties. Clays Clay Miner 41:558–564CrossRefGoogle Scholar
  31. 31.
    Velu S, Swamy CS (1996) Selective C-alkylation of phenol with methanol over catalysts derived from copper-aluminium hydrotalcite-like compounds. Appl Catal A 145:141–153CrossRefGoogle Scholar
  32. 32.
    Alejandre A, Medina F, Rodriguez X, Salagre P, Sueiras JE (1999) Preparation and activity of Cu–Al mixed oxides via hydrotalcite-like precursors for the oxidation of phenol aqueous solutions. J Catal 188:311–324CrossRefGoogle Scholar
  33. 33.
    Sanchez Valente J, Figueras F, Gravelle M, Kumbhar P, Lopez J, Besse J-P (2000) Basic properties of the mixed oxides obtained by thermal decomposition of hydrotalcites containing different metallic compositions. J Catal 189:370–381CrossRefGoogle Scholar
  34. 34.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32:751–767CrossRefGoogle Scholar
  35. 35.
    Jaggi VH, Oswald HR (1961) Die kristallstruktur des kupferhydroxids, Cu(OH)2. Acta Cryst 14:1041–1045CrossRefGoogle Scholar
  36. 36.
    Oswald HR, Reller A, Schmalle HW, Dubler E (1990) Structure of copper(II) hydroxide, Cu(OH)2. Acta Cryst. C 46:2279–2284CrossRefGoogle Scholar
  37. 37.
    Cudennec Y, Lecerf A (2001) Étude du type structural de γ-FeO(OH)(s) et comparaison avec la structure de Cu(OH)2(s). C.R. Acad Sci Paris Chimie/Chemistry 4:885–891Google Scholar
  38. 38.
    Yamaoka T, Abe M, Tsuji M (1989) Synthesis of Cu-Al hydrotalcite like compound and its ion exchange property. Mater Res Bull 24:1183–1199CrossRefGoogle Scholar
  39. 39.
    Park IY, Kuroda K, Kato C (1990) Preparation of complex copper aluminum double hydroxide phases from copper(II) ammine complex solutions. Solid State Ionics 42:197–203CrossRefGoogle Scholar
  40. 40.
    Alejandre A, Medina F, Salagre P, Correig X, Sueiras JE (1999) Preparation and study of Cu-Al mixed oxides via hydrotalcite-like precursors. Chem Mater 11:939–948CrossRefGoogle Scholar
  41. 41.
    Lwin Y, Yarmo MA, Yaakob Z, Mohamad AB, Daud WRW (2001) Synthesis and characterization of Cu-Al layered double hydroxides. Mater Res Bull 36:193–198CrossRefGoogle Scholar
  42. 42.
    Fogg AM, Williams GR, Chester R, O’Hare D (2004) A novel family of layered double hydroxides—[MAl4(OH)12] (NO3)2.xH2O (M = Co, Ni, Cu, Zn). J Mater Chem 14:2369–2371CrossRefGoogle Scholar
  43. 43.
    Trujillano R, Holgado MJ, Pigazo F, Rives V (2006) Preparation, physicochemical characterisation and magnetic properties of Cu–Al layered double hydroxides with CO3 2− and anionic surfactants with different alkyl chains in the interlayer. Phys B 373:267–273CrossRefGoogle Scholar
  44. 44.
    Britto S, Kamath PV (2009) Thermal, solution and reductive decomposition of Cu-Al layered double hydroxides into oxide products. J Solid State Chem 182:1193–1199CrossRefGoogle Scholar
  45. 45.
    Auer SA, Gredig SV, Köppel RA, Baiker A (1999) Synthesis of methylamines from CO2, H2 and NH3 over Cu-Mg-Al mixed oxides. J Mol Catal A: Chem 141:193–203CrossRefGoogle Scholar
  46. 46.
    Carja G, Nakamura R, Aida T, Niiyama H (2001) Textural properties of layered double hydroxides : effect of magnesium substitution by copper and iron. Microporous Mesoporous Mater 47:275–284CrossRefGoogle Scholar
  47. 47.
    Melian-Cabrera I, Lopez Granados M, Fierro JLG (2002) Thermal decomposition of a hydrotalcite-containing Cu–Zn–Al precursor: thermal methods combined with an in situ DRIFT study. Phys Chem Chem Phys 4:3122–3127CrossRefGoogle Scholar
  48. 48.
    Kannan S, Rives V, Knözinger H (2004) High-temperature transformations of Cu-rich hydrotalcites. J Solid State Chem 177:319–331CrossRefGoogle Scholar
  49. 49.
    Roussel H, Briois V, Elkaim E, De Roy A, Besse JP (2000) Cationic order and structure of [Zn-Cr-Cl] and [Cu-Cr-Cl] layered double hydroxides : a XRD and EXAFS study. J Phys Chem B 104:5915–5923CrossRefGoogle Scholar
  50. 50.
    Le Nestour A, Gaudon M, Villeneuve G, Andriessen R, Demourgues A (2007) Steric and Electronic Effects Relating to the Cu2+ Jahn−Teller Distortion in Zn1−xCuxAl2O4 Spinels. Inorg Chem 46:2645–2658CrossRefGoogle Scholar
  51. 51.
    Rives V, Kannan S (2000) Layered double hydroxides with the hydrotalcite-type structure containing Cu2+, Ni2+ and Al3+. J Mater Chem 10:489–495CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mourad Intissar
    • 1
  • Alain Seron
    • 2
  • Fabien Giovannelli
    • 3
  • Cécile Autret
    • 4
  • Mikael Motelica-Heino
    • 1
  • Fabian Delorme
    • 3
  1. 1.Université d’Orléans CNRS/INSU Institut des Sciences de la Terre d’Orléans, UMR 7327Orléans CedexFrance
  2. 2.BRGMOrléans Cedex 2France
  3. 3.Université François Rabelais de Tours, CNRS, CEA, INSA, GREMAN UMR 7347, IUT de BloisBlois CedexFrance
  4. 4.Université François Rabelais de Tours, CNRS, CEA, INSA, GREMAN UMR 7347, Faculté des Sciences et TechniquesToursFrance

Personalised recommendations