Journal of Materials Science

, Volume 50, Issue 3, pp 1237–1247 | Cite as

Modification mechanism of primary silicon by TiB2 particles in a TiB2/ZL109 composite

  • Jing Sun
  • Xiaobo Zhang
  • Yijie Zhang
  • Naiheng Ma
  • Haowei Wang
Original Paper


Modification of primary silicon was observed in a hypereutectic Al–Si composite reinforced with TiB2 particles. The primary silicon was found to be refined significantly by TiB2 particles, with the size being reduced from about 25 to 5 μm. Close observation of the microstructure indicates that the TiB2 particles engulfed by the primary silicon acts as the nucleation sites and maintained consistent orientation establishing in primary silicon. According to the experimental results, it was supposed that a few atomic layer of TiSi2 film between the TiB2 and Si would provide good nucleation conditions. According to the critical values for the interatomic spacing misfit, 10 %, along the matching directions and the d-value mismatch, 6 %, between matching planes, the possibility of nucleation is determined by the conventional plane-on-plane model. Furthermore, the edge-to-edge model is used to predict the matching combinations among Si, C54-TiSi2, and TiB2 in detail.


Habit Plane Titanium Atom Primary Silicon TiB2 Particle Electromagnetic Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Choi H, Konishi H, Li X (2012) Al2O3 nanoparticles induced simultaneous refinement and modification of primary and eutectic Si particles in hypereutectic Al–20Si alloy. Mater Sci Eng A 541:159–165. doi: 10.1016/j.msea.2012.01.131 CrossRefGoogle Scholar
  2. 2.
    Feng HK, Yu SR, Li YL, Gong LY (2008) Effect of ultrasonic treatment on microstructures of hypereutectic Al–Si alloy. J Mater Process Technol 208(1):330–335. doi: 10.1016/j.jmatprotec.2007.12.121 CrossRefGoogle Scholar
  3. 3.
    Chirita G, Stefanescu I, Soares D, Silva FS (2009) Influence of vibration on the solidification behaviour and tensile properties of an Al–18 wt% Si alloy. Mater Des 30(5):1575–1580. doi: 10.1016/j.matdes.2008.07.045 CrossRefGoogle Scholar
  4. 4.
    Zhang XH, Su GC, Ju CW, Wang WC, Yan WL (2010) Effect of modification treatment on the microstructure and mechanical properties of Al–0.35 % Mg–7.0 % Si cast alloy. Mater Des 31:4408–4413. doi: 10.1016/j.matdes.2010.04.032 CrossRefGoogle Scholar
  5. 5.
    Gökçe A, Fındık F, Kurt AO (2011) Microstructural examination and properties of premixed Al–Cu–Mg powder metallurgy alloy. Mater Charact 62:730–735. doi: 10.1016/j.matchar.2011.04.021 CrossRefGoogle Scholar
  6. 6.
    Findik F (2012) Improvements in spinodal alloys from past to present. Mater Des 42:131–146. doi: 10.1016/j.matdes.2012.05.039 CrossRefGoogle Scholar
  7. 7.
    Findik F, Flower HM (1992) Microstructure and hardness development in Cu–30Ni–2·5Cr and Cu–45Ni–10Cr spinodal alloys. Mater Sci Tech 8:197–205CrossRefGoogle Scholar
  8. 8.
    Findik F, Flower HM (1993) Morphological changes and hardness evolution in Cu–30Ni–5Cr and Cu–45Ni–15Cr spinodal alloys. Mater Sci Tech 9:408–416CrossRefGoogle Scholar
  9. 9.
    Findik F (1993) Observations on particle size/spacing relationships and phase equilibria in the Cu–Ni–Cr system. J Mater Sci 28:5056–5059. doi: 10.1007/bf00361178 CrossRefGoogle Scholar
  10. 10.
    Gökçe A, Fındık F, Kurt AO (2013) Effects of Mg content on aging behavior of Al4CuXMg PM alloy. Mater Des 46:524–531. doi: 10.1016/j.matdes.2012.10.045 CrossRefGoogle Scholar
  11. 11.
    Findik F (2002) Modulated Structures in Cu-32Ni-3Cr and Cu-46Ni-17Cr Alloys. Can Metall Quart 41:337–347CrossRefGoogle Scholar
  12. 12.
    Liang D, Bayraktar Y, Jones H (1995) Formation and segregation of primary silicon in Bridgman solidification Al-18.3 wt% Si alloy. Acta Metall Mater 43:579–585. doi: 10.1016/0956-7151(94)00287-R CrossRefGoogle Scholar
  13. 13.
    Wang R-Y, Lu W-H, Hogan LM (1997) Faceted growth of silicon crystals in Al–Si alloys. Metall Mater Trans A 28:1233. doi: 10.1007/s11661-997-0289-x CrossRefGoogle Scholar
  14. 14.
    Singh H, Gokhale AM, Tewari A, Zhang S, Mao Y (2009) Three-dimensional visualization and quantitative characterization of primary silicon particles in an Al–Si base alloy. Scripta Mater 61(4):441–444. doi: 10.1016/j.scriptamat.2009.04.040 CrossRefGoogle Scholar
  15. 15.
    Sigworth GK, Alcoa PM (2008) Modification of aluminum-silicon alloys. Int J Metalcast 49:90–104. doi: 10.1361/asmhba0005301 Google Scholar
  16. 16.
    Zuo M, Zhao D, Teng X, Geng H, Zhang Z (2013) Effect of P and Sr complex modification on Si phase in hypereutectic Al–30Si alloys. Mater Des 47:857–864. doi: 10.1016/j.matdes.2012.12.054 CrossRefGoogle Scholar
  17. 17.
    Dai H, Du J, Wang L, Peng C, Liu X (2010) First-principle study of the AlP/Si interfacial adhesion. Physica B Condens Matter 405(2):573–578. doi: 10.1016/j.physb.2009.09.068 CrossRefGoogle Scholar
  18. 18.
    Yu L, Liu X, Ding H, Bian X (2007) A new nucleation mechanism of primary Si by peritectic-like coupling of AlP and TiB2 in near eutectic Al-Si alloy. J Alloys Compd 432:156–162. doi: 10.1016/j.jallcom.2006.06.005 CrossRefGoogle Scholar
  19. 19.
    Liu X, Wu Y, Bian X (2005) The nucleation sites of primary Si in Al–Si alloys after addition of boron and phosphorus. J Alloy Compd 391(1–2):90–94. doi: 10.1016/j.jallcom.2004.09.003 CrossRefGoogle Scholar
  20. 20.
    Mizutani Y, Kawai S, Miwa K, Yasue K, Tamura T, Sakaguchi Y (2004) Effect of the intensity and frequency of electromagnetic vibrations on refinement of primary silicon in Al-17 % Si alloy. Mater Trans 45(6):1939–1943. doi: 10.2320/matertrans.45.1939 CrossRefGoogle Scholar
  21. 21.
    Böttger B, Eiken J, Steinbach I (2006) Phase field simulation of equiaxed solidification in technical alloys. Acta Metall Mater 54:2697–2704. doi: 10.1016/j.actamat.2006.02.008 CrossRefGoogle Scholar
  22. 22.
    Yi H, Ma N, Li X, Zhang Y, Wang H (2006) High-temperature mechanics properties of in situ TiB 2p reinforced Al–Si alloy composites. Mater Sci Eng A 419(1):12–17. doi: 10.1016/j.msea.2005.10.020 CrossRefGoogle Scholar
  23. 23.
    Zhou S, Liu X, Wang D (2010) Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries. Nano Lett 10:860–863. doi: 10.1021/nl903345f CrossRefGoogle Scholar
  24. 24.
    Zhu Y, Zhao D, Li R, Liu J (2006) Self-aligned TiSi2/Si heteronanocrystal nonvolatile memory. Appl Phys Lett 88(10):103507–103510. doi: 10.1063/1.2183815 CrossRefGoogle Scholar
  25. 25.
    Catana A, Schmid PE, Heintze M, Lévy F, Stadelmann P, Bonnet R (1990) Atomic scale study of local TiSi2/Si epitaxies. J Appl Phys 67(4):1820–1825. doi: 10.1063/1.345609 CrossRefGoogle Scholar
  26. 26.
    Ting CY, Wittmer M (1983) Investigation of the Al/TiSi2/Si contact system. J Appl Phys 54(2):937–943. doi: 10.1063/1.332018 CrossRefGoogle Scholar
  27. 27.
    Li P, Li Y, Wu Y, Ma G, Liu X (2012) Distribution of the TiB2 particles and its effect on the mechanical properties of A390 alloy. Mater Sci Eng A 546:146–152. doi: 10.1016/j.msea.2012.03.042 CrossRefGoogle Scholar
  28. 28.
    Zhang MX, Kelly PM (2005) Edge-to-edge matching and its applications Part: application to the simple HCP/BCC system. Acta Mater 53:1073–1084. doi: 10.1016/j.actamat.2004.11.007 CrossRefGoogle Scholar
  29. 29.
    Zhang MX, Kelly PM (2005) Edge-to-edge matching and its applications: part II. Application to Mg–Al, Mg–Y and Mg–Mn alloys. Acta Mater 53(4):1085–1096. doi: 10.1016/j.actamat.2004.11.005 CrossRefGoogle Scholar
  30. 30.
    Zhang MX, Kelly PM, Qian M, Taylor JA (2005) Crystallography of grain refinement in Mg–Al based alloys. Acta Mater 53(11):3261–3270. doi: 10.1016/j.actamat.03.030 CrossRefGoogle Scholar
  31. 31.
    Qiu D, Taylor JA, Zhang MX, Kelly PM (2007) A mechanism for the poisoning effect of silicon on the grain refinement of Al–Si alloys. Acta Mater 55(4):1447–1456. doi: 10.1016/j.actamat.2006.09.046 CrossRefGoogle Scholar
  32. 32.
    Zhang MX, Kelly PM, Easton MA, Taylor JA (2005) Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model. Acta Mater 53(5):1427–1438. doi: 10.1016/j.actamat.2004.11.037 CrossRefGoogle Scholar
  33. 33.
    Zhang WZ, Weatherly GC (1998) A comparative study of the theory of the O-lattice and the phenomenological theory of martensite crystallography to phase transformations. Acta Mater 46(6):1837–1847. doi: 10.1016/S1359-6454(97)00435-7 CrossRefGoogle Scholar
  34. 34.
    Ye F, Zhang WZ (2002) Coincidence structures of interfacial steps and secondary misfit dislocations in the habit plane between Widmanstätten cementite and austenite. Acta Mater 50(11):2761–2777. doi: 10.1016/S1359-6454(02)00077-0 CrossRefGoogle Scholar
  35. 35.
    Furuhara T, Howe JM, Aaronson HI (1991) Interphase boundary structures of intragranular proeutectoid α plates in a hypoeutectoid Ti–Cr alloy. Acta Metall Mater 39(11):2873–2886. doi: 10.1016/0956-7151(91)90104-9 CrossRefGoogle Scholar
  36. 36.
    Ye F, Zhang WZ, Qiu D (2004) A TEM study of the habit plane structure of intragrainular proeutectoid α precipitates in a Ti-7.26 wt% Cr alloy. Acta Mater 52(8):2449–2460. doi: 10.1016/j.actamat.2004.01.037 CrossRefGoogle Scholar
  37. 37.
    Kelly PM, Zhang MX (2005) Comments on edge-to-edge matching and the equivalence of the invariant line, Δg and Moiré Fringe approaches to the crystallographic features of precipitates. Scripta Mater 52:679–682. doi: 10.1016/j.scriptamat.2004.11.030 CrossRefGoogle Scholar
  38. 38.
    Mann RW (1994) The C49 to C54 phase transformation in TiSi2 thin films. J Electrochem Soc 141(5):1347–1350. doi: 10.1149/1.2054921 CrossRefGoogle Scholar
  39. 39.
    Chou TC, Wong CY, Tu KN (1987) Lattice imaging of metastable TiSi2. J Appl Phys 62(6):2275–2279. doi: 10.1063/1.339483 CrossRefGoogle Scholar
  40. 40.
    Ravindran P, Fast L, Korzhavyi PA, Johansson B, Wills J, Eriksson O (1998) Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J Appl Phys 84(9):4891–4904. doi: 10.1063/1.368733 CrossRefGoogle Scholar
  41. 41.
    Kim J, Posadas A, Dargis R, Choi M, Demkov A, Smith D (2011) Formation of single-orientation epitaxial Islands of TiSi2 on Si (001) using Sr passivation. Microsc Microanal 17:1330–1335. doi: 10.1017/s1431927611007525 CrossRefGoogle Scholar
  42. 42.
    Merwe JHvd (1982) Analytical selection of ideal epitaxial configurations and some speculations on the occurrence of epitaxy I. Epitaxy with rectangular interfacial atomic meshes. Philos Mag A 45(1):127–143. doi: 10.1080/01418618208243907 CrossRefGoogle Scholar
  43. 43.
    Kelly PM, Zhang MX (2006) Edge-to-edge matching-the fundamentals. J Metall Mater Trans A 37(3):833–839. doi: 10.1007/s11661-006-1003-0 CrossRefGoogle Scholar
  44. 44.
    Hall MG, Aaronson HI, Kinsma KR (1972) The structure of nearly coherent fcc: bcc boundaries in a Cu–Cr alloy. Surf Sci 31:257–274. doi: 10.1016/0039-6028(72)90264-6 CrossRefGoogle Scholar
  45. 45.
    Fujii T, Mori T, Kato M (1992) Crystallography and morphology of needle-like α-Fe precipitate particles in a Cu matrix. Acta Metall Mater 40(12):3413–3420. doi: 10.1016/0956-7151(92)90055-J CrossRefGoogle Scholar
  46. 46.
    Duly D (1993) Application of the invariant line model for bcc/hcp couples: a criterion based on surface variations. Acta Metall Mater 41(5):1559–1566. doi: 10.1016/0956-7151(93)90264-S CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jing Sun
    • 1
  • Xiaobo Zhang
    • 1
  • Yijie Zhang
    • 1
  • Naiheng Ma
    • 1
  • Haowei Wang
    • 1
  1. 1.State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations