Skip to main content
Log in

Impact of W on structural evolution and diffusivity of Ni–W melts: an ab initio molecular dynamics study

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Effects of W on structural evolution and diffusivity of Ni–10W and Ni–20W (at.%) melts are studied via ab initio molecular dynamic simulations. The atomic local topology is characterized in terms of pair correlation functions, structure factors, bond pairs, and topological structures. It is observed that the Ni–20W melt is more closely packed than the Ni–10W, showing higher average coordination number and more Voronoi polyhedra with high coordination numbers. The tracer diffusion coefficients of Ni and W calculated by the mean-squared displacement are very close to each other in both Ni–W alloys. Comparing with their self-diffusion coefficients of pure Ni and pure W, the tracer diffusion coefficient of Ni in Ni–W melts decreases, while that of W increases. Nearly identical tracer diffusivities of Ni and W in Ni–W melts attribute to the formation of local solute-centered polyhedra with high deformation electron density severing as bridges between various atomic clusters and strengthening the atomic bonding, indicating the collective motion of Ni and W in those melts. Moreover, atomic bonds of Ni–W metallic melts characterized by the deformation electron density present the network among different atomic clusters, revealing the physical nature of the collective motions between W and Ni.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cavaletti E, Naveos S, Mercier S, Josso P, Bacos MP, Monceau D (2009) Ni–W diffusion barrier: its influence on the oxidation behaviour of a beta-(Ni, Pt)Al coated fourth generation nickel-base superalloy. Surf Coat Technol 204:761–765

    Article  Google Scholar 

  2. Wang H, Liu R, Cheng F, Cao Y, Ding G, Zhao X (2010) Electrodepositing amorphous Ni–W alloys for MEMS. Microelectron Eng 87:1901–1906

    Article  Google Scholar 

  3. Krolikowski A, Plonska E, Ostrowski A, Donten M, Stojek Z (2009) Effects of compositional and structural features on corrosion behavior of nickel–tungsten alloys. J Solid State Electrochem 13:263–275

    Article  Google Scholar 

  4. Sriraman KR, Raman SGS, Seshadri SK (2006) Synthesis and evaluation of hardness and sliding wear resistance of electrodeposited nanocrystalline Ni–W alloys. Mater Sci Eng, A 418:303–311

    Article  Google Scholar 

  5. Sriraman KR, Ganesh Sundara Raman S, Seshadri SK (2007) Corrosion behaviour of electrodeposited nanocrystalline Ni–W and Ni–Fe–W alloys. Mater Sci Eng A 460:39–45

    Article  Google Scholar 

  6. Detor AJ, Miller MK, Schuh CA (2006) Solute distribution in nanocrystalline Ni–W alloys examined through atom probe tomography. Philos Mag 86:4459–4475

    Article  Google Scholar 

  7. Rupert TJ, Schuh CA (2010) Sliding wear of nanocrystalline Ni–W: structural evolution and the apparent breakdown of Archard scaling. Acta Mater 58:4137–4148

    Article  Google Scholar 

  8. Trelewicz JR, Schuh CA (2009) Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys Rev B 79:094112

    Article  Google Scholar 

  9. Van Den Avyle JA, Brooks JA, Powell AC (1998) Reducing defects in remelting processes for high-performance alloys. JOM 50:22–25

    Article  Google Scholar 

  10. Valdes J, Shang S-L, Liu Z-K, King P, Liu X (2010) Quenching differential thermal analysis and thermodynamic calculation to determine partition coefficients of solute elements in simplified Ni-base superalloys. Met Mater Trans A 41:487–498

    Article  Google Scholar 

  11. Hui X, Lin DY, Chen XH, Wang WY, Wang Y, Shang SL, Liu ZK (2013) Structural mechanism for ultrahigh-strength Co-based metallic glasses. Scripta Mater 68:257–260

    Article  Google Scholar 

  12. Sheng HW, Luo WK, Alamgir FM, Bai JM, Ma E (2006) Atomic packing and short-to-medium-range order in metallic glasses. Nature 439:419–425

    Article  Google Scholar 

  13. Hui X, Fang HZ, Chen GL, Shang SL, Wang Y, Qin JY, Liu ZK (2009) Atomic structure of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass alloy. Acta Mater 57:376–391

    Article  Google Scholar 

  14. Wang SY, Kramer MJ, Xu M, Wu S, Hao SG, Sordelet DJ, Ho KM, Wang CZ (2009) Experimental and ab initio molecular dynamics simulation studies of liquid Al60Cu40 alloy. Phys Rev B 79:144205

    Article  Google Scholar 

  15. Wang WY, Fang HZ, Shang SL, Zhang H, Wang Y, Hui X, Mathaudhu S, Liu ZK (2011) Atomic structure and diffusivity in liquid Al80Ni20 by ab initio molecular dynamics simulations. Phys B Condens Matter 406:3089–3097

    Article  Google Scholar 

  16. Han JJ, Wang WY, Liu XJ, Wang CP, Hui XD, Liu ZK (2014) Effect of solute atoms on glass-forming ability for Fe–Y–B alloy: an ab initio molecular dynamics study. Acta Mater 77:96–110

    Article  Google Scholar 

  17. Fang HZ, Wang WY, Jablonski PD, Liu ZK (2012) Effects of reactive elements on the structure and diffusivity of liquid chromia: an ab initio molecular dynamics study. Phys Rev B 85:014207

    Article  Google Scholar 

  18. Jakse N, Pasturel A (2007) Modeling the structural, dynamical, and magnetic properties of liquid Al1–xMnx (x = 0.14, 0.2, and 0.4): a first-principles investigation. Phys Rev B 76:024207

    Article  Google Scholar 

  19. Han J, Wang WY, Wang C, Hui X, Liu X, Liu Z-K (2014) Origin of enhanced glass-forming ability of Ce-containing Al–Fe alloy: ab initio molecular dynamics study. Intermetallics 46:29–39

    Article  Google Scholar 

  20. Wang WY, Shang SL, Fang HZ, Zhang H, Wang Y, Mathaudhu S, Hui X, Liu ZK (2012) Effect of composition on atomic structure, diffusivity and viscosity of liquid Al–Zr alloys. Metall Mater Trans A 43:3471–3480

    Article  Google Scholar 

  21. Han JJ, Wang WY, Wang CP, Wang Y, Liu XJ, Liu ZK (2013) Accurate determination of thermodynamic properties for liquid alloys based on ab initio molecular dynamics simulation. Fluid Phase Equilib 360:44–53

    Article  Google Scholar 

  22. Gu TK, Bian XF, Qin JY, Xu CY (2005) Ab initio molecular-dynamics simulations of liquid GaSb and InSb. Phys Rev B 71:104206

    Article  Google Scholar 

  23. Zhang H, Shang SL, Wang WY, Wang Y, Hui XD, Chen LQ, Liu ZK (2014) Structure and energetics of Ni from ab initio molecular dynamics calculations. Comput Mater Sci 89:242–246

    Article  Google Scholar 

  24. Waseda Y, Okazaki H, Masumoto T (1977) Current views on structure and crystallization of metallic glasses. J Mater Sci 12:1927–1949. doi:10.1007/BF00561964

    Article  Google Scholar 

  25. Waseda Y, Chen HS (1980) On the structure of metallic glasses of transition metal-metalloid systems. Sci Rep Res Tohoku A 28:143–155

    Google Scholar 

  26. Waseda Y (1980) The structure of non-crystalline materials: liquids and amorphous solids. McGraw-Hill, New York

    Google Scholar 

  27. Meyer A, Stuber S, Holland-Moritz D, Heinen O, Unruh T (2008) Determination of self-diffusion coefficients by quasielastic neutron scattering measurements of levitated Ni droplets. Phys Rev B 77:092201

    Article  Google Scholar 

  28. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  29. Kresse G, Furthmuller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  Google Scholar 

  30. Wang Y, Perdew JP (1991) Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys Rev B 44:13298–13307

    Article  Google Scholar 

  31. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  32. Woodward C, Asta M, Trinkle DR, Lill J, Angioletti-Uberti S (2010) Ab initio simulations of molten Ni alloys. J Appl Phys 107:113522

    Article  Google Scholar 

  33. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  34. Zhao YF, Lin DY, Chen XH, Liu ZK, Hui XD (2014) Sluggish mobility and strong icosahedral ordering in Mg–Zn–Ca liquid and glassy alloys. Acta Mater 67:266–277

    Article  Google Scholar 

  35. Nose S (1984) A unified formulation of the constant temperature molecular-dynamics methods. J Chem Phys 81:511–519

    Article  Google Scholar 

  36. Zhang YN, Wang L, Wang WM, Zhou JK (2006) Structural transition of sheared-liquid metal in quenching state. Phys Lett A 355:142–147

    Article  Google Scholar 

  37. Gao R, Hui X, Fang HZ, Liu XJ, Chen GL, Liu ZK (2008) Structural characterization of Mg65Cu25Y10 metallic glass from ab initio molecular dynamics. Comput Mater Sci 44:802–806

    Article  Google Scholar 

  38. Holland-Moritz D, Stüber S, Hartmann H, Unruh T, Hansen T, Meyer A (2009) Structure and dynamics of liquid Ni36 Zr64 studied by neutron scattering. Phys Rev B 79:064204

    Article  Google Scholar 

  39. Honeycutt JD, Andersen HC (1987) Molecular-dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91:4950–4963

    Article  Google Scholar 

  40. Borodin VA (1999) Local atomic arrangements in polytetrahedral materials. Philos Mag A 79:1887–1907

    Article  Google Scholar 

  41. Wang WY, Shang SL, Wang Y, Darling KA, Mathaudhu SN, Hui XD, Liu ZK (2012) Electron localization morphology of the stacking faults in Mg: a first-principles study. Chem Phys Lett 551:121–125

    Article  Google Scholar 

  42. Wang WY, Shang SL, Wang Y, Darling KA, Kecskes LJ, Mathaudhu SN, Hui XD, Liu Z-K (2014) Electronic structures of long periodic stacking order structures in Mg: a first-principles study. J Alloy Compd 586:656–662

    Article  Google Scholar 

  43. Nakashima PNH, Smith AE, Etheridge J, Muddle BC (2011) The bonding electron density in aluminum. Science 331:1583–1586

    Article  Google Scholar 

  44. Wang WY, Shang SL, Wang Y, Mei Z-G, Darling KA, Kecskes LJ, Mathaudhu SN, Hui XD, Liu Z-K (2014) Effects of alloying elements on stacking fault energies and electronic structures of binary Mg alloys: a first-principles study. Mater Res Lett 2:29–36

    Article  Google Scholar 

  45. Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658

    Article  Google Scholar 

  46. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Article  Google Scholar 

  47. Horbach J, Das SK, Griesche A, Macht MP, Frohberg G, Meyer A (2007) Self-diffusion and interdiffusion in Al80Ni20 melts: simulation and experiment. Phys Rev B 75:174304

    Article  Google Scholar 

  48. Fang HZ, Hui X, Chen GL, Liu ZK (2008) Structural evolution of Cu during rapid quenching by ab initio molecular dynamics. Phys Lett A 372:5831–5837

    Article  Google Scholar 

  49. Lazarev NP, Bakai AS, Abromeit C (2007) Molecular dynamics simulation of viscosity in supercooled liquid and glassy AgCu alloy. J Non-Cryst Solids 353:3332–3337

    Article  Google Scholar 

  50. Gu TK, Qin JY, Bian XF (2007) Correlation between local structure of melts and glass forming ability for Al-based alloys: a first-principles study. Appl Phys Lett 91:081907

    Article  Google Scholar 

  51. Mattern N, Kuhn U, Hermann H, Ehrenberg H, Neuefeind J, Eckert J (2002) Short-range order of Zr62 − x Ti x Al10Cu20Ni8 bulk metallic glasses. Acta Mater 50:305–314

    Article  Google Scholar 

  52. Sears VF (1986) In: Kurt S, David LP (eds) Methods in experimental physics. Academic Press, Dordrecht, pp. 521–550

  53. Fang HZ, Hui X, Chen GL, Ottking R, Liu YH, Schaefer JA, Liu ZK (2008) Ab initio molecular dynamics simulation for structural transition of Zr during rapid quenching processes. Comput Mater Sci 43:1123–1129

    Article  Google Scholar 

  54. Jakse N, Pasturel A (2003) Local order of liquid and supercooled Zirconium by ab initio molecular dynamics. Phys Rev Lett 91:195501

    Article  Google Scholar 

  55. Jakse N, Pasturel A (2006) Local order of liquid and undercooled transition metal based systems: ab initio molecular dynamics study. Mod Phys Lett B 20:655–674

    Article  Google Scholar 

  56. Jakse N, Lebacq O, Pasturel A (2004) Ab initio molecular-dynamics simulations of short-range order in liquid Al80Mn20 and Al80Ni20 alloys. Phys Rev Lett 93:207801

    Article  Google Scholar 

  57. Biazzo I, Caltagirone F, Parisi G, Zamponi F (2009) Theory of amorphous packings of binary mixtures of hard spheres. Phys Rev Lett 102:195701

    Article  Google Scholar 

  58. Sheng HW, Cheng YQ, Lee PL, Shastri SD, Ma E (2008) Atomic packing in multicomponent aluminum-based metallic glasses. Acta Mater 56:6264–6272

    Article  Google Scholar 

  59. Luo WK, Sheng HW, Ma E (2006) Pair correlation functions and structural building schemes in amorphous alloys. Appl Phys Lett 89:131927

    Article  Google Scholar 

  60. Gabriel A, Lukas HL, Allibert CH, Ansara I (1985) Experimental and calculated phase-diagrams of the Ni–W, Co–W and Co–Ni–W system. Zeitschrift Fur Metallkunde 76:589–595

    Google Scholar 

  61. Gupta KP (2000) The Co–Ni–W (cobalt–nickel–tungsten) system. J Phase Equilib 21:396–401

    Article  Google Scholar 

  62. Faupel F, Frank W, Macht M-P, Mehrer H, Naundorf V, Rätzke K, Schober HR, Sharma SK, Teichler H (2003) Diffusion in metallic glasses and supercooled melts. Rev Mod Phys 75:237–280

    Article  Google Scholar 

  63. Yu H-B, Wang W-H, Samwer K (2013) The β relaxation in metallic glasses: an overview. Mater Today 16:183–191

    Article  Google Scholar 

  64. Stevenson JD, Wolynes PG (2010) A universal origin for secondary relaxations in supercooled liquids and structural glasses. Nat Phys 6:62–68

    Article  Google Scholar 

  65. Yu HB, Samwer K, Wu Y, Wang WH (2012) Correlation between beta relaxation and self-diffusion of the smallest constituting atoms in metallic glasses. Phys Rev Lett 109:095508

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation (Grant No. DMR-1006557) and the Army Research Laboratory (W911NF-08-2-0064 and W911NF-09-2-0045) in the Unites States, National Natural Science Foundation of China (50431030 and 50871013), and National Basic Research Program of China (2007CB613901). W.Y. Wang acknowledges the support from the Project Based Personnel Exchange Program with American Academic Exchange Service and China Scholarship Council (2008[3072]). First-principles calculations were carried out on the LION clusters at the Pennsylvania State University supported by the Materials Simulation Center and the Research Computing and Cyberinfrastructure unit at the Pennsylvania State University. Calculations were also carried out on the CyberStar cluster funded by NSF through grant OCI-0821527 and the XSEDE cluster through grant TG-DMR-140033 and TG-DMR-140063.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William Yi Wang or Zi-Kui Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W.Y., Shang, S.L., Wang, Y. et al. Impact of W on structural evolution and diffusivity of Ni–W melts: an ab initio molecular dynamics study. J Mater Sci 50, 1071–1081 (2015). https://doi.org/10.1007/s10853-014-8664-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8664-7

Keywords

Navigation