Journal of Materials Science

, Volume 50, Issue 3, pp 1058–1064 | Cite as

Correlation between grain orientation and carrier concentration of poly-crystalline In2O3 thin film grown by MOCVD

  • Ruiqin Hu
  • Yanli Pei
  • Zimin Chen
  • Jingchuan Yang
  • Jiayong Lin
  • Ya Li
  • Jun Liang
  • Bingfeng Fan
  • Gang Wang
Original Paper


In this study, various In2O3 thin films were grown on c-plane sapphire substrates by metal–organic chemical vapor deposition via changing the growth parameters. The structural and electrical properties of the films were investigated by employing the X-ray diffraction (XRD), scanning electron microscopy, conductive atomic force microscopy (CAFM), and Hall Effect measurement. Results revealed that the investigated In2O3 thin films are bcc phase poly-crystalline with preferred orientation along the [100] or [111] direction. Moreover, the existence of two types of grains with different conductivities in the investigated In2O3 thin films was confirmed by CAFM measurement. Interestingly, a positive correlation was found between carrier concentrations and (222)/(400) XRD diffraction peak intensity ratios of the investigated In2O3 thin films. The mechanism of the positive correlation was explained by the difference in impurities concentrations between the two types of grains with the difference crystalline orientations.


SnO2 Carrier Concentration In2O3 Metal Oxide Semiconductor Hall Effect Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partly supported by the National Natural Science Foundation of China (No. 61204091), the opening project of State Key Laboratory of Silicon Materials, China (No. SKL2012(13), and Shenzhen Innovation Fund, China (No. JCYJ20120614150201123). The authors would like to thank Yiqiang Ni for his help in English proofreading.


  1. 1.
    Liu H, Avrutin V, Izyumskaya N, Özgür Ü, Morkoç H (2010) Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattice Microstruct 48:458–484CrossRefGoogle Scholar
  2. 2.
    Gokulakrishnan V, Parthiban S, Jeganathan K, Ramamurthi K (2011) Investigations on the structural, optical and electrical properties of Nb-doped SnO2 thin films. J Mater Sci 46:5553–5558. doi: 10.1007/s10853-011-5504-x CrossRefGoogle Scholar
  3. 3.
    Dutta J, Perrin J, Emeraud T, Laurent JM, Smith A (1995) Pyrosol deposition of fluorine-doped tin dioxide thin films. J Mater Sci 30:53–62. doi: 10.1007/BF00352131 CrossRefGoogle Scholar
  4. 4.
    Hoel CA, Mason TO, Gaillard J, Poeppelmeier KR (2010) Transparent conducting oxides in the ZnO–In2O3–SnO2 system. Chem Mater 22:3569–3579. doi: 10.1021/cm1004592 CrossRefGoogle Scholar
  5. 5.
    Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79:47–154CrossRefGoogle Scholar
  6. 6.
    Kim S, Lee W, Lee E, Hwang SK, Lee C (2007) Dependence of the resistivity and the transmittance of sputter-deposited Ga-doped ZnO films on oxygen partial pressure and sputtering temperature. J Mater Sci 42:4845–4849. doi: 10.1007/s10853-006-0738-8 CrossRefGoogle Scholar
  7. 7.
    Lee W, Dwivedi RP, Hong C, Kim H, Cho N, Lee C (2008) Enhancement of the electrical properties of Al-doped ZnO films deposited on ZnO-buffered glass substrates by using an ultrathin aluminum underlayer. J Mater Sci 43:1159–1161. doi: 10.1007/s10853-007-2379-y CrossRefGoogle Scholar
  8. 8.
    Betz U, Kharrazi Olsson M, Marthy J, Escolá MF, Atamny F (2006) Thin films engineering of indium tin oxide: large area flat panel displays application. Surf Coat Technol 200:5751–5759CrossRefGoogle Scholar
  9. 9.
    Stadler A (2012) Transparent conducting oxides—an up-to-date overview. Materials 5:661–683CrossRefGoogle Scholar
  10. 10.
    Granqvist CG (2007) Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mater Sol C 91:1529–1598CrossRefGoogle Scholar
  11. 11.
    Chatterjee S (2008) Polymer–ITO nanocomposite template for the optoelectronic application. J Mater Sci 43:1696–1700. doi: 10.1007/s10853-007-2376-1 CrossRefGoogle Scholar
  12. 12.
    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H (2004) Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432:488–492CrossRefGoogle Scholar
  13. 13.
    Fortunato E, Barquinha P, Martins R (2012) Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater 24:2945–2986CrossRefGoogle Scholar
  14. 14.
    Kamiya T, Nomura K, Hosono H (2009) Origins of high mobility and low operation voltage of amorphous oxide TFTs: electronic Structure, electron transport, defects and doping. J Displ Technol 5:468–483CrossRefGoogle Scholar
  15. 15.
    Nomura K, Takagi A, Kamiya T, Ohta H, Hirano M, Hosono H (2006) Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn J Appl Phys 45:4303CrossRefGoogle Scholar
  16. 16.
    Kamiya T, Nomura K, Hosono H (2010) Present status of amorphous In-Ga-Zn-O thin-film transistors. Sci Technol Adv Mater 11:44305CrossRefGoogle Scholar
  17. 17.
    Park JS, Maeng W, Kim H, Park J (2012) Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films 520:1679–1693CrossRefGoogle Scholar
  18. 18.
    Iwasaki T, Itagaki N, Den T, Kumomi H, Nomura K, Kamiya T, Hosono H (2007) Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: an application to amorphous oxide semiconductors in In–Ga–Zn–O system. Appl Phys Lett 90:242114CrossRefGoogle Scholar
  19. 19.
    Itagaki N, Iwasaki T, Kumomi H, Den T, Nomura K, Kamiya T, Hosono H (2008) Zn–In–O based thin-film transistors: compositional dependence. Phys. Status Solidi A 205:1915–1919CrossRefGoogle Scholar
  20. 20.
    King P, Veal TD, Payne DJ, Bourlange A, Egdell RG, McConville CF (2008) Surface electron accumulation and the charge neutrality level in In2O3. Phys Rev Lett 101:116808CrossRefGoogle Scholar
  21. 21.
    De Wit JHW (1977) Structural aspects and defect chemistry in In2O3. J Solid State Chem 20:143–148CrossRefGoogle Scholar
  22. 22.
    De Wit JHW, Van Unen G, Lahey M (1977) Electron concentration and mobility in In2O3. J Phys Chem Solids 38:819–824CrossRefGoogle Scholar
  23. 23.
    De Wit JHW (1975) The high temperature behavior of In2O3. J Solid State Chem 13:192–200CrossRefGoogle Scholar
  24. 24.
    Rosenberg AJ (1960) Oxidation of intermetallic compounds. II. Interrupted oxidation of InSb1. J Phys Chem 64:1143–1150CrossRefGoogle Scholar
  25. 25.
    Kamei M, Enomoto H, Yasui I (2001) Origin of the crystalline orientation dependence of the electrical properties in tin-doped indium oxide films. Thin Solid Films 392:265–268CrossRefGoogle Scholar
  26. 26.
    Yi CH, Yasui I, Shigesato Y (1995) Oriented tin-doped indium oxide films on 〈001〉 preferred oriented polycrystalline ZnO films. Jpn J Appl Phys 34:1638CrossRefGoogle Scholar
  27. 27.
    Yi CH, Yasui I, Shigesato Y (1995) Effects of tin concentrations on structural characteristics and electrooptical properties of tin-doped indium oxide films prepared by RF magnetron sputtering. Jpn J Appl Phys 34:600–605CrossRefGoogle Scholar
  28. 28.
    Kamei M, Shigesato Y, Yasui I, Taga N, Takaki S (1997) Comparative study of heteroepitaxial and polycrystalline tin-doped indium oxide films. J Non Cryst Solids 218:267–272CrossRefGoogle Scholar
  29. 29.
    van der Pauw LJ (1958) A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res Rep 13:1–9Google Scholar
  30. 30.
    Chi W, Yen K, Su H, Li S, Gong J (2011) On the physical properties of In2O3 films grown on (0001) sapphire substrates by atomic layer deposition. J Vac Sci Technol A 29:3A–105ACrossRefGoogle Scholar
  31. 31.
    Zhang K, Lazarov VK, Galindo PL, Oropeza FE, Payne DJ, Lai H, Egdell RG (2012) Domain matching epitaxial growth of In2O3 thin films on α-Al2O3 (0001). Cryst Growth Des 12:1000–1007CrossRefGoogle Scholar
  32. 32.
    Wang CY, Kirste L, Morales FM, Manuel JM, Röhlig CC, Köhler K, Cimalla V, Garcia R, Ambacher O (2011) Growth mechanism and electronic properties of epitaxial In2O3 films on sapphire. J Appl Phys 110:93712CrossRefGoogle Scholar
  33. 33.
    Yang F, Ma J, Feng X, Kong L (2008) Structural and photoluminescence properties of single-crystalline In2O3 films grown by metal organic vapor deposition. J Cryst Growth 310:4054–4057CrossRefGoogle Scholar
  34. 34.
    Lozano JG, Morales FM, Garcia R, Gonzalez D, Lebedev V, Wang CY, Cimalla V, Ambacher O (2007) Cubic InN growth on sapphire (0001) using cubic indium oxide as buffer layer. Appl Phys Lett 90:91901CrossRefGoogle Scholar
  35. 35.
    Marezio M (1966) Refinement of the crystal structure of In2O3 at two wavelengths. Acta Crystallogr A 20:723–728CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ruiqin Hu
    • 1
  • Yanli Pei
    • 1
    • 2
  • Zimin Chen
    • 1
  • Jingchuan Yang
    • 1
  • Jiayong Lin
    • 1
  • Ya Li
    • 1
  • Jun Liang
    • 3
  • Bingfeng Fan
    • 1
  • Gang Wang
    • 1
  1. 1.State Key Lab of Optoelectronics Materials & Technologies, School of Physics & EngineeringSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Silicon MaterialsZhejiang UniversityHangzhouPeople’s Republic of China
  3. 3.Shenzhen Graduated SchoolPeking UniversityShenzhenPeople’s Republic of China

Personalised recommendations