Advertisement

Journal of Materials Science

, Volume 50, Issue 2, pp 980–989 | Cite as

High quality oxide-free metallic nanoparticles: a strategy for synthesis through laser ablation in aqueous medium

  • Kirtiman Deo Malviya
  • Kamanio Chattopadhyay
Original Paper

Abstract

The paper explores the synthesis of oxide-free nanoparticles of Ag and Cu through laser ablation of pure targets under aqueous medium and tuning the quality and size through addition of Polyvinylpyrrolidone (PVP) in the medium. The size distribution of nanoparticles reduces from 37 ± 30 nm and 13 ± 5 nm to 32 ± 12 nm and 4 ± 1 nm for Ag and Cu with changes in PVP concentration from 0.00 to 0.02 M, respectively. Irregular shaped particles of Ag with Ag2O phase and a Cu–Cu2O core–shell particles form without the addition of PVP, while oxide layer is absent with 0.02 M of PVP. The recent understanding of the mechanism of particle formation during laser ablation under liquid medium allows us to rationalize our observation.

Keywords

Laser Ablation Cu2O Laser Energy Ag2O Plasma Plume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to acknowledge the microscopy facilities available at Advanced Facility for Microscopy and Microanalysis (AFMM), Indian Institute of Science, Bangalore, India.

References

  1. 1.
    Shima PD, Philip J (2013) Role of thermal conductivity of dispersed nanoparticles on heat transfer properties of nanofluid. Ind Eng Chem Res 53(2):980–988CrossRefGoogle Scholar
  2. 2.
    Singh D, Timofeeva EV, Moravek MR, Cingarapu S, Yu W, Fischer T, Mathur S (2014) Use of metallic nanoparticles to improve the thermophysical properties of organic heat transfer fluids used in concentrated solar power. Sol Energy 105:468–478CrossRefGoogle Scholar
  3. 3.
    Sebti S, Mastiani M, Mirzaei H, Dadvand A, Kashani S, Hosseini S (2013) Numerical study of the melting of nano-enhanced phase change material in a square cavity. J Zhejiang Univ Sci A 14(5):307–316CrossRefGoogle Scholar
  4. 4.
    Tamayo LA, Zapata PA, Vejar ND, Azócar MI, Gulppi MA, Zhou X, Thompson GE, Rabagliati FM, Páez MA (2014) Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mater Sci Eng C 40:24–31CrossRefGoogle Scholar
  5. 5.
    Tauran Y, Brioude A, Coleman AW, Rhimi M, Kim B (2013) Molecular recognition by gold, silver and copper nanoparticles. World J Biol Chem 4(3):35–63Google Scholar
  6. 6.
    Devi JM, Umadevi M (2014) Synthesis and characterization of silver–PVA nanocomposite for sensor and antibacterial applications. J Clust Sci 25(2):639–650CrossRefGoogle Scholar
  7. 7.
    Yang W, Liu C, Zhang Z, Liu Y, Nie S (2013) Preparation and conductive mechanism of copper nanoparticles ink. J Mater Sci 24(12):5175–5182. doi: 10.1007/s10854-013-1541-3 Google Scholar
  8. 8.
    Zhai D, Zhang T, Guo J, Fang X, Wei J (2013) Water-based ultraviolet curable conductive inkjet ink containing silver nano-colloids for flexible electronics. Colloid Surf A 424:1–9CrossRefGoogle Scholar
  9. 9.
    Amendola V, Meneghetti M (2013) What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys Chem Chem Phys 15(9):3027–3046CrossRefGoogle Scholar
  10. 10.
    Walter J, Petersen S, Stahl F, Scheper T, Barcikowski S (2010) Laser ablation-based one-step generation and bio-functionalization of gold nanoparticles conjugated with aptamers. J Nanobiotechnol 8(1):1–11CrossRefGoogle Scholar
  11. 11.
    Malviya KD, Chattopadhyay K (2014) Synthesis and mechanism of composition and size dependent morphology selection in nanoparticles of Ag–Cu alloys processed by laser ablation under liquid medium. J Phys Chem C 118(24):13228–13237CrossRefGoogle Scholar
  12. 12.
    Messina GC, Wagener P, Streubel R, De Giacomo A, Santagata A, Compagnini G, Barcikowski S (2013) Pulsed laser ablation of a continuously-fed wire in liquid flow for high-yield production of silver nanoparticles. Phys Chem Chem Phys 15(9):3093–3098CrossRefGoogle Scholar
  13. 13.
    Mafuné F, Kohno JY, Takeda Y, Kondow T, Sawabe H (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104(39):9111–9117CrossRefGoogle Scholar
  14. 14.
    He C, Sasaki T, Zhou Y, Shimizu Y, Masuda M, Koshizaki N (2007) Surfactant-assisted preparation of novel layered silver bromide-based inorganic/organic nanosheets by pulsed laser ablation in aqueous media. Adv Funct Mater 17(17):3554–3561CrossRefGoogle Scholar
  15. 15.
    Bian F, Tian YC, Wang R, Yang HX, Xu H, Meng S, Zhao J (2011) Ultrasmall silver nanopores fabricated by femtosecond laser pulses. Nano Lett 11(8):3251–3257CrossRefGoogle Scholar
  16. 16.
    Tsuji T, Thang DH, Okazaki Y, Nakanishi M, Tsuboi Y, Tsuji M (2008) Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions. Appl Surf Sci 254(16):5224–5230CrossRefGoogle Scholar
  17. 17.
    Lin XZ, Liu P, Yu JM, Yang GW (2009) Synthesis of CuO nanocrystals and sequential assembly of nanostructures with shape-dependent optical absorption upon laser ablation in liquid. J Phys Chem C 113(40):17543–17547CrossRefGoogle Scholar
  18. 18.
    Muniz-Miranda M, Gellini C, Giorgetti E (2011) Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation. J Phys Chem C 115(12):5021–5027CrossRefGoogle Scholar
  19. 19.
    Wagener P, Ibrahimkutty S, Menzel A, Plech A, Barcikowski S (2013) Dynamics of silver nanoparticle formation and agglomeration inside the cavitation bubble after pulsed laser ablation in liquid. Phys Chem Chem Phys 15(9):3068–3074CrossRefGoogle Scholar
  20. 20.
    Ring TA (1996) Chapter 2 Ceramic powder characterization. In: Ring TA (ed) Fundamentals of ceramic powder processing and synthesis. Academic Press, San Diego, pp 43–79CrossRefGoogle Scholar
  21. 21.
    McClary F, Gaye-Campbell S, Hai Ting A, Mitchell J (2013) Enhanced localized surface plasmon resonance dependence of silver nanoparticles on the stoichiometric ratio of citrate stabilizers. J Nanopart Res 15(2):1–13CrossRefGoogle Scholar
  22. 22.
    Maleki A, Rahimi R, Maleki S (2014) Synthesis, characterization and morphology of new magnetic fluorochromate hybrid nanomaterials with triethylamine surface modified iron oxide nanoparticles. Synth Met 194:11–18CrossRefGoogle Scholar
  23. 23.
    Yan Z, Bao R, Chrisey DB (2013) Generation of Ag-Ag2O complex nanostructures by excimer laser ablation of Ag in water. Phys Chem Chem Phys 15(9):3052–3056CrossRefGoogle Scholar
  24. 24.
    Muniz-Miranda M, Gellini C, Simonelli A, Tiberi M, Giammanco F, Giorgetti E (2013) Characterization of copper nanoparticles obtained by laser ablation in liquids. Appl Phys A 110(4):829–833CrossRefGoogle Scholar
  25. 25.
    Goswami R, Chattopadhyay K (1994) Microstructural developments in rapidly soliified monotectic alloys. Mater Sci Eng A 179–180(Part 1):163–167CrossRefGoogle Scholar
  26. 26.
    Uhlmann DR, Chalmers B, Jackson KA (1964) Interaction between particles and a solid-liquid interface. J Appl Phys 35(10):2986–2993CrossRefGoogle Scholar
  27. 27.
    Surappa MK, Rohatgi PK (1981) Heat diffusivity criterion for the entrapment of particles by a moving solid-liquid interface. J Mater Sci 16(2):562–564. doi: 10.1007/BF00738658 CrossRefGoogle Scholar
  28. 28.
    Shangguan D, Ahuja S, Stefanescu DM (1992) An analytical model for the interaction between an insoluble particle and an advancing solid/liquid interface. Metall Trans A 23(2):669–680CrossRefGoogle Scholar
  29. 29.
    Sasikumar R, Ramamohan TR (1991) Distortion of the temperature and solute concentration fields due to the presence of particles at the solidification front—effects on particle pushing. Acta Metall 39(4):517–522CrossRefGoogle Scholar
  30. 30.
    Luk’yanchuk BS, Marine W, Anisimov SI, Simakina GA (1999) Condensation of vapor and nanoclusters formation within the vapor plume produced by nanosecond laser ablation of Si, Ge, and C. In: Proceedings of SPIE 3618, Laser applications in microelectronic and optoelectronic manufacturing IV pp. 434–452Google Scholar
  31. 31.
    Yan Z, Chrisey DB (2012) Pulsed laser ablation in liquid for micro-/nanostructure generation. J Photochem Photobiol C 13(3):204–223CrossRefGoogle Scholar
  32. 32.
    Wang CX, Liu P, Cui H, Yang GW (2005) Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid. Appl Phys Lett 87(20):201913–201914CrossRefGoogle Scholar
  33. 33.
    Zheludkevich ML, Gusakov AG, Voropaev AG, Vecher AA, Kozyrski EN, Raspopov SA (2004) Oxidation of Silver by atomic Oxygen. Oxid Met 61(1–2):39–48CrossRefGoogle Scholar
  34. 34.
    Fujita K, Ando D, Uchikoshi M, Mimura K, Isshiki M (2013) New model for low-temperature oxidation of copper single crystal. Appl Surf Sci 276:347–358CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations