Journal of Materials Science

, Volume 50, Issue 2, pp 937–947 | Cite as

An efficient photovoltaic device based on novel D–A–D solution-processable small molecules

  • Zaifang Li
  • Qingfeng Dong
  • Shiyu Yao
  • Jingyu Qian
  • Yanling Wang
  • Fangyuan Jiang
  • Han Yang
  • Qing Zhao
  • Qiufei Hou
  • Wei Meng
  • Jinhui Tong
  • Sixing Xiong
  • Wenjing Tian
Original Paper


A series of novel small molecule PHPD, TPAPD, and CZPD were designed and synthesized for probing their potential applications in photovoltaic devices. Differential scanning calorimetry (DSC) measurement reveals that PHPD displays amorphous property, while both TPAPD and CZPD exhibit crystalline properties. Ultraviolet–Visible (UV–Vis) absorption spectra demonstrate that these small molecules possess relatively broad absorption with absorption edges of 706 nm (PHPD), 671 nm (TPAPD), and 632 nm (CZPD), respectively. Cyclic voltammetry (CV) investigation indicates that the highest occupied molecular orbital (HOMO) energy levels were well tuned (−4.97, −5.24, and −5.38 eV) with the introduction of different electron-donating moieties. The device based on CZPD without further optimization displays the highest power conversion efficiency (PCE) of 2.00 % among three small molecules (1.21 % for TPAPD and 0.28 % for PHPD), which stands out as one of the highest values for photovoltaic devices based on 3-carbazole (CZ) derivatives. This result would uncover the potential applications of 3-carbazole-based donor materials for organic solar cells.


High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Power Conversion Efficiency Photovoltaic Device Intramolecular Charge Transfer 



This work was supported by the Research Program of 973 Program (No2014CB643506), the Research Program of Hubei Province Department of Education (T201215), Natural Science Foundation of Hubei Province (2012FFC05401), Foundation of Hubei Educational Committee (Q20122512, Q20122505), Open Foundation of Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices (13XKL02015).

Supplementary material

10853_2014_8653_MOESM1_ESM.docx (244 kb)
Supplementary material 1 (DOCX 244 kb)


  1. 1.
    Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93:394CrossRefGoogle Scholar
  2. 2.
    Krebs FC, Tromholt T, Jørgensen M (2010) Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2:873CrossRefGoogle Scholar
  3. 3.
    Zhou YH, Khan TM, Shim JW, Dindar A, Hernandez CF, Kippelen B (2014) All-plastic solar cells with a high photovoltaic dynamic range. J Mater Chem A 2:3492CrossRefGoogle Scholar
  4. 4.
    Nielsen TD, Cruickshank C, Foged S, Thorsen J, Kreb FC (2010) Market and intellectual property analysis of polymer solar cells. Sol Energy Mater Sol Cells 94:1553CrossRefGoogle Scholar
  5. 5.
    Helgesen M, Søndergaard R, Krebs FC (2010) Advanced materials and processes for polymer solar cell devices. J Mater Chem 20:36CrossRefGoogle Scholar
  6. 6.
    Dennler G, Scharber MC, Ameri T, Denk P, Forberich K, Waldauf C, Brabec CJ (2008) Design rules for donors in bulk-heterojunction tandem solar cells-towards 15 % energy-conversion efficiency. Adv Mater 20:579CrossRefGoogle Scholar
  7. 7.
    You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen CC, Gao J, Gao J, Gao J, Gao J, Gao J, Li G, Yang Y (2013) A polymer tandem solar cell with 10.6 % power conversion efficiency. Nat Commun 4:1446CrossRefGoogle Scholar
  8. 8.
    Liu YS, Chen CC, Hong ZR, Gao J, Yang Y, Zhou HP, Dou LT, Li G, Yang Y (2013) Solution-processed small-molecule solar cells: breaking the 10 % power conversion efficiency. Sci Rep 3:3356Google Scholar
  9. 9.
    Zhou YH, Hernandez CF, Shim J, Kippelen B (2012) A universal method to produce low-work function electrodes for organic electronics. Science 336:327CrossRefGoogle Scholar
  10. 10.
    Duan CH, Zhang K, Zhong CM, Huang F, Cao Y (2013) Recent advances in water/alcohol-soluble p-conjugated materials: new materials and growing applications in solar cells. Chem Soc Rev 42:9071CrossRefGoogle Scholar
  11. 11.
    Fan X, Cui CH, Fang GJ, Wang JZ, Li SZ, Cheng F, Long H, Li YF (2012) Efficient polymer solar cells based on poly(3-hexylthiophene):indene-C70 bisadduct with a MoO3 buffer layer. Adv Funct Mater 22:585CrossRefGoogle Scholar
  12. 12.
    He ZC, Zhong CM, Su SJ, Xu M, Wu HB, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photon 6:591Google Scholar
  13. 13.
    Li ZF, Dong QF, Xu B, Cheng WD, Yao SY, Zhang XY, Wen SP, Li H, Dong YJ, Tian WJ (2012) Novel solution processable small molecule containing new electron-withdrawing group and oligothiophene for photovoltaic applications. Sol Energy Mater Sol Cells 98:343CrossRefGoogle Scholar
  14. 14.
    Krebs FC, Nyberg RB, Jørgensen M (2005) Influence of residual catalyst on the properties of conjugated polyphenylenevinylene materials: palladium nanoparticles and poor electrical performance. Chem Mater 16:1313CrossRefGoogle Scholar
  15. 15.
    Nielsen KT, Bechgaard K, Krebs FC (2005) Removal of palladium nanoparticles from polymer materials. Macromolecules 38:658CrossRefGoogle Scholar
  16. 16.
    Lin YZ, Ma LC, Li YF, Liu YQ, Zhu DB, Zhan XW (2014) Small-molecule solar cells with fill factors up to 0.75 via a layer-by-layer solution process. Adv Energy Mater 4:1300626Google Scholar
  17. 17.
    Li ZF, Dong QF, Li YW, Xu B, Tian WJ (2011) Design and synthesis of solution processible small molecules towards high photovoltaic performance. J Mater Chem 21:2159CrossRefGoogle Scholar
  18. 18.
    Li ZF, Bian J, Wang YL, Jiang FY, Liang GJ, He P, Hou QF, Tong JH, Liang Y, Zhong ZC, Zhou YH, Tian WJ (2014) Effect of alkyl chain length on the photovoltaic performance of oligothiophene-based small molecules. Sol Energy Mater Sol Cells 130:336CrossRefGoogle Scholar
  19. 19.
    Shang HX, Fan HJ, Liu Y, Hu WP, Li YF, Zhan XW (2011) A solution- processable star-shaped molecule for high-performance organic solar cells. Adv Mater 23:1554CrossRefGoogle Scholar
  20. 20.
    Zhou YH, Pei JN, Dong QF, Sun XB, Liu YQ, Tian WJ (2009) Donor-acceptor molecule as the acceptor for polymer-based bulk heterojunction solar cells. J Phys Chem C 113:7882CrossRefGoogle Scholar
  21. 21.
    Li YW, Guo Q, Li ZF, Pei JN, Tian WJ (2010) Solution processable D-A small molecules for bulk-heterojunction solar cells. Energy Environ Sci 3:1427CrossRefGoogle Scholar
  22. 22.
    Sun Y, Welch GC, Leong WL, Takacs CJ, Bazan GC, Heeger AJ (2012) Solution-processed small-molecule solar cells with 6.7 % efficiency. Nat Mater 11:44CrossRefGoogle Scholar
  23. 23.
    Zhou JY, Wan XJ, Liu YS, Zuo Y, Li Z, He GR, Long GK, Ni W, Li CX, Su XC, Chen YS (2012) Small molecules based on benzo[1,2-b:4,5-b′] dithiophene unit for high-performance solution-processed organic solar cells. J Am Chem Soc 134:16345CrossRefGoogle Scholar
  24. 24.
    Guan X, Zhang K, Huang F, Bazan GC, Cao Y (2012) Conjugated polymers and their amino-functionalized precursors: new cathode interlayers for high-performance optoelectronic devices. Adv Funct Mater 22:2846CrossRefGoogle Scholar
  25. 25.
    Li PC, Tong H, Ding JQ, Xie ZY, Wang LX (2013) Small molecules based on 2,7-carbazole for efficient solution-processed organic solar cells. J Mater Chem A 1:8805CrossRefGoogle Scholar
  26. 26.
    Li PC, Tong H, Liu J, Ding JQ, Xie ZY, Wang LX (2013) An A′-A-D-A-A′ type small molecule based on 2,7-carbazole for solution-processed organic solar cells with high open-circuit voltage. RSC Adv 3:23098CrossRefGoogle Scholar
  27. 27.
    Chu TY, Alem S, Tsang SW, Tse SC, Wakim S, Lu JP, Dennler G, Waller D, Gaudian R, Tao Y (2011) Morphology control in polycarbazole based bulk heterojunction solar cells and its impact on device performance. Appl Phys Lett 98:253301CrossRefGoogle Scholar
  28. 28.
    Sun Y, Takacs CJ, Cowan SR, Seo JH, Gong X, Roy A, Heeger AJ (2011) Efficient, air-stable bulk heterojunction polymer solar cells using MoOx as the anode interfacial layer. Adv Mater 23:2226CrossRefGoogle Scholar
  29. 29.
    Xie HM, Zhang K, Duan CH, Liu SJ, Huang F, Cao Y (2012) New acceptor-pended conjugated polymers based on 3,6- and 2,7-carbazole for polymer solar cells. Polymer 53:5675CrossRefGoogle Scholar
  30. 30.
    Witker D, Reynolds JR (2005) Soluble variable color carbazole-containing electrochromic polymers. Macromolecules 38:7636CrossRefGoogle Scholar
  31. 31.
    Zhang LH, Zeng S, Yin LX, Ji CY, Li KC, Li YQ, Wang Y (2013) The synthesis and photovoltaic properties of A-D-A-type small molecules containing terminal units. New J Chem 37:632CrossRefGoogle Scholar
  32. 32.
    Sharma GD, Mikroyannidis JA, Sharma SS, Thomas KRJ (2012) Bulk heterojunction organic photovoltaic devices based on small molecules featuring pyrrole and carbazole and 2-(4-nitrophenyl)acrylonitrile acceptor segments as donor and fullerene derivatives as acceptor. Dyes Pigm 94:320CrossRefGoogle Scholar
  33. 33.
    Shirota Y, Kageyama H (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107:953CrossRefGoogle Scholar
  34. 34.
    Roquet S, Cravino A, Leriche P, Alévêque O, Frère P, Roncali J (2010) Triphenylamine–thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells. J Am Chem Soc 128:3459CrossRefGoogle Scholar
  35. 35.
    Kramer CS, Zeitler K, Muller TJJ (2000) Synthesis of functionalized ethynylphenothiazine fluorophores. Org Lett 2:3723CrossRefGoogle Scholar
  36. 36.
    Bhongale CJ, Chang CW, Lee CS, Diau WG, Hsu CS (2005) Relaxation dynamics and structural characterization of organic nanoparticles with enhanced emission. J Phys Chem B 109:13472CrossRefGoogle Scholar
  37. 37.
    Li KP, Qu JL, Xu B, Zhou YH, Liu LJ, Peng P, Tian WJ (2009) Synthesis and photovoltaic properties of novel solution-processable triphenylamine-based dendrimers with sulfonyldibenzene cores. New J Chem 33:2120CrossRefGoogle Scholar
  38. 38.
    He JT. (2009) PhD thesis, Jilin university, 23Google Scholar
  39. 39.
    Thompson BC, Kim YG, Reynolds JR (2005) Spectral broadening in MEH- PPV:PCBM-based photovoltaic devices via blending with a narrow band gap cyanovinylene-dioxythiophene polymer. Macromolecules 38:5359CrossRefGoogle Scholar
  40. 40.
    Li ZF, Dong QF, Xu B, Li H, Wen SP, Pei JN, Yao SY, Lu HG, Li PF, Tian WJ (2012) New amorphous small molecules-synthesis, characterization and their application in bulk heterojunction solar cells. Sol Energy Mater Sol Cells 95:2272CrossRefGoogle Scholar
  41. 41.
    Leeuw DMD, Simenon MMJ, Brown AR, Einerhand REF (1997) Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth Met 87:53CrossRefGoogle Scholar
  42. 42.
    Shaheen SE, Brabec CJ, Sariciftci NS (2001) 2.5 % efficient organic plastic solar cells. Appl Phys Lett 78:841CrossRefGoogle Scholar
  43. 43.
    Wu G, Zhao G, He C, Zhang J, He Q, Chen X, Li Y (2009) Synthesis and photovoltaic properties of a star-shaped molecule with triphenylamine as core and benzo[1, 2, 5]thiadiazol vinylene as arms. Sol Energy Mater Sol Cells 93:108CrossRefGoogle Scholar
  44. 44.
    Xue LL, He JT, Gu X, Yang ZF, Xu B, Tian WJ (2009) Efficient bulk-heterojunction solar cells based on a symmetrical D-π-A-π-D organic dye molecule. J Phys Chem C 113:12911CrossRefGoogle Scholar
  45. 45.
    Li ZF, Pei JN, Li YW, Xu B, Deng M, Liu ZY, Li H, Lu HG, Li Q, Tian WJ (2010) Synthesis and photovoltaic properties of solution processable small molecules containing 2-pyran-4-ylidenemalononitrile and oligothiophene moieties. J Phys Chem C 114:18270CrossRefGoogle Scholar
  46. 46.
    Blom PWM, Jong MJM, Munster MGV (1997) Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene). Phys Rev B 55:656CrossRefGoogle Scholar
  47. 47.
    Duren JKV, Yang XN, Loos J, Bulle-Lieuwma CWT, Sieval AB, Hummelen JC, Janssen RAJ (2004) Relating the morphology of a poly(p-phenylene vinylene)/methanofullerene blend to bulk heterojunction solar cell performance. Adv Funct Mater 14:425CrossRefGoogle Scholar
  48. 48.
    Yang Y, Zhang J, Zhou Y, Zhao GG, He C, Li YF, Andersson M, Inganās O, Zhang FL (2010) Solution-processable organic molecule with triphenylamine core and two benzothiadiazole-thiophene arms for photovoltaic application. J Phys Chem C 114:3701CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zaifang Li
    • 1
    • 2
    • 3
  • Qingfeng Dong
    • 2
  • Shiyu Yao
    • 2
  • Jingyu Qian
    • 2
  • Yanling Wang
    • 1
  • Fangyuan Jiang
    • 3
  • Han Yang
    • 1
  • Qing Zhao
    • 1
  • Qiufei Hou
    • 1
  • Wei Meng
    • 3
  • Jinhui Tong
    • 3
  • Sixing Xiong
    • 3
  • Wenjing Tian
    • 2
  1. 1.College of Chemical Engineering and Food Science, Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and DevicesHubei University of Arts and ScienceXiang YangPeople’s Republic of China
  2. 2.State Key Laboratory of Supramolecular Structure and MaterialsJilin UniversityChangchunPeople’s Republic of China
  3. 3.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations