Journal of Materials Science

, Volume 50, Issue 2, pp 863–872 | Cite as

The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films

  • M. D. Samper-Madrigal
  • O. Fenollar
  • F. Dominici
  • R. Balart
  • J. M. Kenny
Original Paper


Green polyethylene is a new and attracting polymer from biobased resources (sugarcane) and identical properties to petroleum-based polyethylene. Its potential in the packaging industry is really promising. In this work, we report the use of different compatibilizer systems for green polyethylene (from sugarcane) and thermoplastic starch (30 wt% TPS) in order to increase ductile mechanical properties and biodegradable content. Typical petroleum-based graft copolymer of polyethylene with maleic anhydride (PE-g-MA) is used as reference compatibilizer, and new compatibilizer systems are developed using sepiolite. The obtained results show that sepiolite-based compatibilizers provide good compatibilization properties as observed by a remarkable increase in elongation at break and a noticeable size reduction of the TPS domains dispersed in the green polyethylene matrix as observed by scanning electron microscopy (SEM).


LDPE Carbon Footprint Sepiolite Compatibilizing Effect Maleic Anhydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study has been funded by the “Conselleria d’Educació, Cultura i Esport”—Generalitat Valenciana (Reference number: GV/2014/008). Authors thank Tolsa S.A for kindly supply sepiolite for this study and Microscopy Services at UPV for helping in using SEM and TEM techniques.


  1. 1.
    Alvarenga RAF, Dewulf J (2013) Plastic vs. fuel: Which use of the Brazilian ethanol Can bring more environmental gains? Renew Energ 59:49–52CrossRefGoogle Scholar
  2. 2.
    Kikuchi Y, Hirao M, Narita K, Sugiyama E, Oliveira S, Chapman S, Arakaki MM, Cappra CM (2013) Environmental performance of biomass-derived chemical production: a case study on sugarcane-derived polyethylene. J Chem Eng Jpn 46:319–325CrossRefGoogle Scholar
  3. 3.
    Liptow C, Tillman A-M (2012) A comparative Life Cycle Assessment Study of polyethylene based on sugarcane and crude oil. J Ind Ecol 16:420–435CrossRefGoogle Scholar
  4. 4.
    Taghizadeh A, Sarazin P, Favis BD (2013) High molecular weight plasticizers in thermoplastic starch/polyethylene blends. J Mater Sci 48:1799–1811. doi: 10.1007/s10853-012-6943-8 CrossRefGoogle Scholar
  5. 5.
    Park HM, Lee WK, Park CY, Cho WJ, Ha CS (2003) Environmentally friendly polymer hybrids—Part I—Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38:909–915. doi: 10.1023/A:1022308705231 CrossRefGoogle Scholar
  6. 6.
    Pimentel TAPF, Duraes JA, Drummond AL, Schlemmer D, Falcao R, Araujo Sales MJ (2007) Preparation and characterization of blends of recycled polystyrene with cassava starch. J Mater Sci 42:7530–7536. doi: 10.1007/s10853-007-1622-x CrossRefGoogle Scholar
  7. 7.
    Rosa DS, Guedes CGF, Carvalho CL (2007) Processing and thermal, mechanical and morphological characterization of post-consumer polyolefins/thermoplastic starch blends. J Mater Sci 42:551–557. doi: 10.1007/s10853-006-1049-9 CrossRefGoogle Scholar
  8. 8.
    Kaseem M, Hamad K, Deri F (2012) Thermoplastic starch blends: a review of recent works. Polym Sci Ser A 54:165–176CrossRefGoogle Scholar
  9. 9.
    Nafchi AM, Moradpour M, Saeidi M, Alias AK (2013) Thermoplastic starches: properties, challenges, and prospects. Starch-Starke 65:61–72CrossRefGoogle Scholar
  10. 10.
    Jimenez A, Jose Fabra M, Talens P, Chiralt A (2012) Edible and biodegradable starch films: a review. Food Bioprocess Tech 5:2058–2076CrossRefGoogle Scholar
  11. 11.
    Bikiaris D, Panayiotou C (1998) LDPE/starch blends compatibilized with PE-g-MA copolymers. J Appl Polym Sci 70:1503–1521CrossRefGoogle Scholar
  12. 12.
    Liu W, Wang YJ, Sun Z (2003) Effects of polyethylene-grafted maleic anhydride (PE-g-MA) on thermal properties, morphology, and tensile properties of low-density polyethylene (LDPE) and corn starch blends. J Appl Polym Sci 88:2904–2911CrossRefGoogle Scholar
  13. 13.
    Pedroso AG, Rosa DS (2005) Mechanical, thermal and morphological characterization of recycled LDPE/corn starch blends. Carbohyd Polym 59:1–9CrossRefGoogle Scholar
  14. 14.
    Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD (2003) High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene. Polymer 44:1517–1526CrossRefGoogle Scholar
  15. 15.
    Yang L, Liu W (2010) Effects of functional groups of starch on asa emulsification and sizing. In: Sun RC, Fu SY (eds) Research progress in paper industry and biorefinery. China University of Technology Press, Guangzhou, pp 1936–1939Google Scholar
  16. 16.
    Kapusniak J, Jochym K, Bajer K, Bajer D (2011) Review of methods for chemical modification of starch. Przem Chem 90:1521–1526Google Scholar
  17. 17.
    Ren L, Jiang M, Tong J, Bai X, Dong X, Zhou J (2010) Influence of surface esterification with alkenyl succinic anhydrides on mechanical properties of corn starch films. Carbohyd Polym 82:1010–1013CrossRefGoogle Scholar
  18. 18.
    Cunha AG, Gandini A (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose 17:1045–1065CrossRefGoogle Scholar
  19. 19.
    Bhattacharya M (1998) Stress relaxation of starch synthetic polymer blends. J Mater Sci 33:4131–4139. doi: 10.1023/A:1004449002240 CrossRefGoogle Scholar
  20. 20.
    Sam ST, Ismail H, Ahmad Z (2011) Soil burial of polyethylene-g-(maleic anhydride) compatibilised LLDPE/soya powder blends. Polym-Plast Technol 50:851–861CrossRefGoogle Scholar
  21. 21.
    Majid RA, Ismail H, Taib RM (2009) Effects of PE-g-MA on tensile properties, morphology and water absorption of LDPE/thermoplastic sago starch blends. Polym-Plast Technol 48:919–924CrossRefGoogle Scholar
  22. 22.
    Kahar M, Wahab A, Ismail H, Othman N (2012) Compatibilization effects of PE-g-MA on mechanical, thermal and swelling properties of high density polyethylene/natural rubber/thermoplastic tapioca starch blends. Polym-Plast Technol 51:298–303CrossRefGoogle Scholar
  23. 23.
    Xu Y, Thurber CM, Lodge TP, Hillmyer MA (2012) Synthesis and remarkable efficacy of model polyethylene-graft-poly(methyl methacrylate) copolymers as compatibilizers in polyethylene/poly(methyl methacrylate) blends. Macromolecules 45:9604–9610CrossRefGoogle Scholar
  24. 24.
    Wang N, Yu J, Ma X, Wu Y (2007) The influence of citric acid on the properties of thermoplastic starch/linear low-density polyethylene blends. Carbohyd Polym 67:446–453CrossRefGoogle Scholar
  25. 25.
    Kim JP, Yoon TH, Mun SP, Rhee JM, Lee JS (2006) Wood-polyethylene composites using ethylene-vinyl alcohol copolymer as adhesion promoter. Bioresource Technol 97:494–499CrossRefGoogle Scholar
  26. 26.
    Choudhury A, Mukherjee M, Adhikari B (2006) Recycling of polyethylene/nylon 6 based waste oil pouches using compatibilizer. Indian J Chem Techn 13:233–241Google Scholar
  27. 27.
    Galan E (1996) Properties and applications of palygorskite-sepiolite clays. Clay Miner 31:443–453CrossRefGoogle Scholar
  28. 28.
    Wan C, Chen B (2011) Synthesis and characterization of biomimetic hydroxyapatite/sepiolite nanocomposites. Nanoscale 3:693–700CrossRefGoogle Scholar
  29. 29.
    Sarifuddin N, Ismail H, Ahmad Z (2014) Influence of halloysite nanotubes hybridized with kenaf core fibers on the physical and mechanical properties of low density polyethylene/thermoplastic sago starch blends. Polym-Plast Technol 53:107–115CrossRefGoogle Scholar
  30. 30.
    Scaffaro R, Botta L, Mistretta MC, La Mantia FP (2013) Processing—morphology—property relationships of polyamide 6/polyethylene blend-clay nanocomposites. Express Polym Lett 7:873–884CrossRefGoogle Scholar
  31. 31.
    Sarifuddin N, Ismail H (2013) Comparative study on the effect of bentonite or feldspar filled low-density polyethylene/thermoplastic sago starch/kenaf core fiber composites. Bioresources 8:4238–4257CrossRefGoogle Scholar
  32. 32.
    Nunez K, Rosales C, Perera R, Villarreal N, Pastor JM (2012) Poly(lactic acid)/low-density polyethylene blends and its nanocomposites based on sepiolite. Polym Eng Sci 52:988–1004CrossRefGoogle Scholar
  33. 33.
    Sangerano M, Pallaro E, Roppolo I, Rizza G (2009) UV-cured epoxy coating reinforced with sepiolite as inorganic filler. J Mater Sci 44:3165–3171. doi: 10.1007/s10853-009-3421-z CrossRefGoogle Scholar
  34. 34.
    Shafiq M, Yasin T, Saeed S (2012) Synthesis and characterization of linear low-density polyethylene/sepiolite nanocomposites. J Appl Polym Sci 123:1718–1723CrossRefGoogle Scholar
  35. 35.
    Mir S, Yasin T, Halley PJ, Siddiqi HM, Ozdemir O, Anh N (2013) Thermal and rheological effects of sepiolite in linear low-density polyethylene/starch blend. J Appl Polym Sci 127:1330–1337CrossRefGoogle Scholar
  36. 36.
    Kanmani P, Rhim J-W (2014) Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloid 35:644–652CrossRefGoogle Scholar
  37. 37.
    Olmo N, Lizarbe MA, Gavilanes JG (1987) Biocompatibility and degradability of sepiolite collagen complex. Biomaterials 8:67–69CrossRefGoogle Scholar
  38. 38.
    Mortazavi S, Ghasemi I, Oromiehie A (2013) Effect of phase inversion on the physical and mechanical properties of low density polyethylene/thermoplastic starch. Polym Test 32:482–491CrossRefGoogle Scholar
  39. 39.
    Pang M-M, Pun M-Y, Ishak ZAM (2013) Degradation studies during water absorption, aerobic biodegradation, and soil burial of biobased thermoplastic starch from agricultural waste/polypropylene blends. J Appl Polym Sci 129:3656–3664CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. D. Samper-Madrigal
    • 1
  • O. Fenollar
    • 1
  • F. Dominici
    • 2
  • R. Balart
    • 1
  • J. M. Kenny
    • 2
  1. 1.Instituto de Tecnología de Materiales (ITM)Universitat Politècnica de València (UPV)AlcoySpain
  2. 2.Materials Research CenterUniversity of PerugiaTerniItaly

Personalised recommendations