Skip to main content
Log in

Some strategies to lower the production cost of carbon gels

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The carbon gels obtained by polymerization of resorcinol (R) and formaldehyde (F) are very attractive materials because a great variety of porous structures to be fitted in specific applications can be tailored by modifying the synthesis conditions. However, the application of RF carbon gels at industrial scale is principally limited by their high cost and by the long duration of the synthesis process. This article shows the strategies applied at different stages of the global process, synthesis, gelation-curing, and drying, which have been developed in order to lower the cost and the processing time of carbon gels. The use of monomers cheaper than R, as phenol or cresols, or of natural resources can lead to the formation of carbon gels with similar structure to that of RF carbon gels by selecting the appropriate synthesis conditions. The stages of gelation and curing can be shortened by using an inorganic acid as polymerization catalyst or by applying the ultrasound technique during the synthesis. Finally some drying techniques, as microwave or convective air drying, cheaper and/or faster than drying by supercritical CO2 are revised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Phloroglucinol is more expensive than resorcinol; however, its combination with phenol (cheaper than resorcinol) in appropriate amounts may result in a lower final cost of the synthesis than when only resorcinol is used as monomer.

  2. The RF and C mF gels dried by ambient pressure are usually called aerogels in the literature because the method used can be considered as a modified method coming from typical aerogel preparations, and the products obtained have structures and properties similar, including low densities, to that of typical aerogels prepared with a supercritical drying technique.

References

  1. Pekala RW. US Patent 4 873 218, 1989

  2. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227. doi:10.1007/BF01139044

    Google Scholar 

  3. Pekala RW, Alviso CT, Lemay JD (1992) Organic aerogels: a new type of ultrastructured polymer. In: Hench LL, West JK (eds) Chemical processing of advanced materials. Wiley, New York, pp 671–683

    Google Scholar 

  4. Lin C, Ritter JA (1997) Effect of synthesis pH on the structure of carbon xerogels. Carbon 35:1271–1278

    Google Scholar 

  5. Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer ST, Miller JM, Dunn B (1998) Carbon aerogels for electrochemical applications. J Non-Cryst Solids 225:74–80

    Google Scholar 

  6. Al-Muhtaseb SA, Ritter JA (2003) Preparation and properties of resorcinol–formaldehyde organic and carbon gels. Adv Mater 15:101–114

    Google Scholar 

  7. Elkhatat AM, Al-Muhtaseb SA (2011) Advances in tailoring resorcinol–formaldehyde organic and carbon gels. Adv Mater 23:2887–2903

    Google Scholar 

  8. Horikawa T, Ono Y, Jun’ichi H, Katsuhiko M (2004) Influence of surface-active agents on pore characteristics of the generated spherical resorcinol–formaldehyde based carbon aerogels. Carbon 42:2683–2689

    Google Scholar 

  9. Awadallah-F A, Ahmed M, Elkhatat AM, Al-Muhtaseb SA (2011) Impact of synthesis conditions on meso- and macropore structures of resorcinol–formaldehyde xerogels. J Mater Sci 46:7760–7769. doi:10.1007/s10853-011-5755-6

    Google Scholar 

  10. Fairén-Jiménez D, Carrasco-Marín F, Moreno-Castilla C (2006) Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalysts. Carbon 44:2301–2307

    Google Scholar 

  11. Job N, Thery A, Pirard R, Marien J, Kocon L, Rouzaud JN (2005) Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43:2481–2494

    Google Scholar 

  12. Job N, Panariello F, Crine M, Pirard JP, Léonard A (2007) Rheological determination of the sol-gel transition during the aqueous synthesis of resorcinol–formaldehyde resins. Colloids Surf A 293:224–228

    Google Scholar 

  13. Fischer U, Saliger R, Bock V, Petricevic R, Fricke J (1997) Carbon aerogels as electrode material in supercapacitors. J Porous Mater 4:281–285

    Google Scholar 

  14. Horikawa T, Hayashi J, Muroyama K (2004) Controllability of pore characteristics of resorcinol–formaldehyde carbon aerogel. Carbon 42:1625–1633

    Google Scholar 

  15. Mirzaeian M, Hall PJ (2009) The control of porosity at nano scale in resorcinol formaldehyde carbon aerogels. J Mater Sci 44:2705–2713. doi:10.1007/s10853-009-3355-5

    Google Scholar 

  16. Sharma CS, Kulkarni MM, Sharma A, Madou M (2009) Synthesis of carbon xerogel particles and fractal-like structures. Chem Eng Sci 64:1536–1543

    Google Scholar 

  17. Hwang SW, Hyun SH (2004) Capacitance control of carbon aerogel electrodes. J Non-Cryst Solids 347:238–245

    Google Scholar 

  18. Job N, Pirard R, Marien J, Pirard J (2004) Porous carbon xerogels with texture tailored by pH control during sol–gel process. Carbon 42:619–628

    Google Scholar 

  19. Fang B, Binder L (2006) A modified activated carbon aerogel for high-energy storage in electric double layer capacitors. J Power Sources 163:616–622

    Google Scholar 

  20. Brandt R, Petricevic R, Proebstle H, Fricke J (2003) Acetic acid catalyzed carbon aerogels. J Porous Mater 10:171–178

    Google Scholar 

  21. Wang J, Glora M, Petricevic R, Salinger R, Pröbtle H, Fricke J (2001) Carbon cloth reinforced carbon aerogel films derived from resorcinol formaldehyde. J Porous Mater 8:159–165

    Google Scholar 

  22. Liang C, Sha G, Guo S (2000) Resorcinol–formaldehyde aerogels prepared by supercritical acetone drying. J Non-Cryst Solids 271:167–170

    Google Scholar 

  23. Moreno-Castilla C, Maldonado-Hódar FJ (2005) Carbon aerogels for catalysis applications: an overwiew. Carbon 43:455–465

    Google Scholar 

  24. Rojas-Cervantes ML, Alonso L, Díaz-Terán J, López-Peinado AJ, Martín-Aranda RM, Gómez-Serrano V (2004) Basic metal-carbon catalysts prepared by sol–gel method. Carbon 42:1575–1582

    Google Scholar 

  25. Aguado-Serrano J, Rojas-Cervantes ML, Martín-Aranda RM, López-Peinado AJ, Gómez-Serrano V (2006) Surface and catalytic properties of acid-metal carbons prepared by the sol–gel method. Appl Surf Sci 252:6075–6079

    Google Scholar 

  26. Maldonado-Hodar FJ (2013) Advances in the development of nanostructured catalysts based on carbon gels. Catal Today 218–219:43–50

    Google Scholar 

  27. Frackowiak E, Begui F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    Google Scholar 

  28. Li J, Wang X, Wang Y, Huang Q, Dai C, Gamboa S (2008) Structure and electrochemical properties of carbon aerogels synthesized at ambient temperatures as supercapacitors. J Non-Cryst Solids 354:19–24

    Google Scholar 

  29. Chang L, Fu Z, Liu M, Yuan L, Wei J, He YW, Liu X, Wang Ch (2014) Optimal electrochemical performances of CO2 activated carbon aerogels for supercapacitors. J Wuhan Univ Technol-Mater Sci Ed 29:213–218. doi:10.1007/s11595-014-0895-6

    Google Scholar 

  30. Kang YK, Lee BI, Lee JS (2009) Hydrogen adsorption on nitrogen-doped carbon xerogels. Carbon 47:1171–1180

    Google Scholar 

  31. Wu X, Wu D, Fu R, Zeng W (2012) Preparation of carbon aerogels with different pore structures and their fixed bed adsorption properties for dye removal. Dyes Pigments 95:689–694

    Google Scholar 

  32. Zubizarreta L, Arenillas A, Pis JJ (2009) Carbon materials for H2 storage. Int J Hydrog Energy 34:4575–4581

    Google Scholar 

  33. Tian HY, Buckley CE, Paskevicius M, Sheppard DA (2012) Hydrogen storage in carbon aerogels. In: Rossi M (ed) Carbon nanomaterials for gas adsorption. Pan Stanford Publishing, Singapore, pp 131–160

    Google Scholar 

  34. Ruben GC, Pekala RW (1995) High-resolution transmission electron microscopy of the nanostructure of melamine–fomaldehhyde aerogels. J Non-Cryst Solids 186:219–231

    Google Scholar 

  35. Nguyen MH, Dao LH (1998) Effects of processing variable on melamine–fomaldehyde aerogel formation. J Non-Cryst Solids 225:51–57

    Google Scholar 

  36. Pekala RW, Alviso CT, Lu X, Gross J, Fricke J (1995) New organic aerogels based upon a phenolic-furfural reaction. J Non-Cryst Solids 188:34–40

    Google Scholar 

  37. Mukai SR, Tamitsuji C, Nishihara H, Tamon H (2005) Preparation of mesoporous carbon gels from an inexpensive combination of phenol and formaldehyde. Carbon 43:2628–2630

    Google Scholar 

  38. Scherdel C, Gayer R, Slawik T, Reichenauer G, Scherb T (2011) Organic and carbon xerogels derived from sodium carbonate controlled polymerisation of aqueous phenol–formaldehyde solutions. J Porous Mater 18:443–450

    Google Scholar 

  39. Wu D, Fu R, Sun Z, Yu Z (2005) Low-density organic and carbon aerogels from the sol–gel polymerization of phenol with formaldehyde. J Non Cryst Solids 351:915–921

    Google Scholar 

  40. Scherdel C, Reichenauer G (2009) Carbon xerogels synthesized via phenol–formaldehyde gels. Microporous Mesoporous Mater 126:133–142

    Google Scholar 

  41. Jirglová H, Pérez-Cadenas AF, Maldonado-Hódar FJ (2009) Synthesis and properties of phloroglucinol–phenol–formaldehyde carbon aerogels and xerogels. Langmuir 25:2461–2466

    Google Scholar 

  42. Gardziella A, Pilato LA, Knop A (2000) Phenolic resins. Springer, Berlin

    Google Scholar 

  43. Li W, Lu A, Guo S (2001) Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol–formaldehyde. Carbon 39:1989–1994

    Google Scholar 

  44. Li W, Lu A, Guo S (2002) Control of mesoporous structure of aerogels derived from cresol–formaldehyde. J Colloid Interface Sci 254:153–157

    Google Scholar 

  45. Li W, Guo S (2000) Preparation of low-density carbon aerogels from a cresol/formaldehyde mixture. Carbon 38:1520–1523

    Google Scholar 

  46. Zhu Y, Hu H, Li W, Zhao H (2006) Preparation of cresol-formaldehyde carbon aerogels via drying aquagel at ambient pressure. J Non-Cryst Solids 352:3358–3362

    Google Scholar 

  47. Li W, Reichenauer G, Fricke J (2002) Carbon aerogels derived from cresol–resorcinol–formaldehyde for supercapacitors. Carbon 40:2955–2959

    Google Scholar 

  48. Li W, Pröbstle H, Fricke J (2003) Electrochemical behavior of mixed CmRF based carbon aerogels as electrode materials for supercapacitors. J Non-Cryst Solids 325:1–5

    Google Scholar 

  49. Zhu Y, Hu H, Li WC, Zhang X (2006) Cresol–fomaldehyde based carbon aerogel as electrode material for electrochemical capacitor. J Power Sources 162:738–742

    Google Scholar 

  50. Tamon H, Ishizaka H, Arakj T, Okazaki M (1998) Control of mesoporous structure or organic and carbon aerogels. Carbon 36:1257–1262

    Google Scholar 

  51. Contreras MS, Páez CA, Zubizarreta L, Léonnard A, Blacher S, Olivera-Fuentes CG et al (2010) A comparison of physical activation of carbon xerogels with carbon dioxide with chemical activation using hydroxides. Carbon 48:3157–3168

    Google Scholar 

  52. Fuertes AB, Pico F, Rojo JM (2004) Influence of pore structure on electric double-layer capacitance of template mesoporous carbons. J Power Sources 133:329–336

    Google Scholar 

  53. Chandra S, Bag S, Bhar R, Pramanik P (2011) Effect of transition and non-transition metals during the synthesis of carbon xerogels. Microporous Mesoporous Mater 138:149–156

    Google Scholar 

  54. Carrasco-Marín F, Fairén-Jiménez D, Moreno-Castilla C (2009) Carbon aerogels from gallic acid–resorcinol mixtures as adsorbents of benzene, toluene and xylenes from dry and wet air under dynamic conditions. Carbon 47:463–469

    Google Scholar 

  55. Zhang R, Li W, Li K, Lu CH, Zhan L, Ling L (2004) Effect of concentration of reactants on porosity of hydrogels organic and carbon aerogels. Microporous Mesoporous Mater 72:167–173

    Google Scholar 

  56. Pérez-Caballero F, Peikolainen AL, Uibu M, Kuusik R, Volobujeva O, Koel M (2008) Preparation of carbon aerogels from 5-methylresorcinol–folmadehyde gels. Microporous Mesoporous Mater 108:230–236

    Google Scholar 

  57. Peikolainen AL, Volobujeva O, Aav R, Uibu M, Koel M (2012) Organic acid catalyzed synthesis of 5-methylresorcinol based organic aerogels in acetonitrile. J Porous Mater 19:189–194

    Google Scholar 

  58. Baumann TF, Fox GA, Satcher JH (2002) Synthesis and characterization of copper-doped aerogels Langmuir 18:7073–7076

    Google Scholar 

  59. Cotet LC, Baia M, Pepescu IC, Cosoveanu V, Indrea E, Popp J, Danciu V (2007) Structural properties of some transition metal highly doped carbon aerogels. J Alloy Compd 434–435:854–857

    Google Scholar 

  60. Szczurek A, Amaral-Labat G, Fierro V, Pizzi A, Masson E, Celzard A (2011) The use of tannin to prepare carbon gels. Part I. Carbon aerogels. Carbon 49:2773–2784

    Google Scholar 

  61. Szczurek A, Amaral-Labat G, Fierro V, Pizzi A, Celzard A (2011) The use of tannin to prepared carbon gels. Part II. Carbon cryogels. Carbon 49:2785–2794

    Google Scholar 

  62. Celzard A, Fierro V, Amaral-Labat G, Szczurek A, Braghiroli F, Parmentier J, Pizzi A, Grishechko LI, Kuznetsov BN (2012) Carbon gels derived from natural resources. Boletín del Grupo Español del Carbón 26:2–7

    Google Scholar 

  63. Celzard A, Fierro V, Pizzi A (2013) New porous materials derived from wood. Techniques de l’Ingenieur, Materiaux Fonctionnels 11(N 18)

  64. Amaral-Labat G, Szczurek A, Fierro V, Pizzi A, Celzard A (2013) Systematic sttudies of tannin-fomaldehyde aerogels preparation and properties. Sci Technol Adv Mater 14(1):015001/1-13

    Google Scholar 

  65. Grishechko LI, Amaral-Labat G, Szczurek A, Fierro V, Kuznetsov BN, Pizzi A, Celzard A (2013) New tannin–lignin aerogels. Ind Crop Prod 41:347–355

    Google Scholar 

  66. Szczurek A, Amaral-Labat G, Fierro V, Pizzi A, Celzard A (2013) New families of carbon gels based on natural resources. J Phys: Conference Series 416:012022/1-6

    Google Scholar 

  67. White RJ, Brun N, Budarin VL, Clark JH, Titirici MM (2014) Always look on the “light” side of life: sustainable carbon aerogels. ChemSusChem 7:670–689

    Google Scholar 

  68. Kim SY, Yeo DH, Lim JW, Yoo K, Lee K, Kim H (2001) Synthesis and characterization of resorcinol-formaldehyde organic aerogel. J Chem Eng Jpn 34:216–220

    Google Scholar 

  69. Reuβ M, Ratke L (2008) Subcritically dried RF-aerogels catalysed by hydrochloric acid. J Sol Gel Sci Technol 47:74–80

    Google Scholar 

  70. Barbieri O, Ehrburger-Dolle F, Rieker TP, Pajonk GM, Pinto N, Rao AV (2001) Small-angle X-ray scattering of a new series of organic aerogels. J Non-Cryst Solids 285:109–115

    Google Scholar 

  71. Brandt R, Fricke J (2004) Acetic-acid-catalyzed and subcritically dried carbon aerogels with a nanometer-size-structure and a wide density range. J Non-Cryst Solids 350:131–135

    Google Scholar 

  72. Merzbacher C, Meier SR, Pierce JR, Korwin ML (2001) Carbon aerogels as broadband non-reflective materials. J Non-Cryst Solids 285:210–215

    Google Scholar 

  73. Feng YN, Miaob L, Tanemura M, Tanemura S, Suzuki K (2008) Effects of further adding of catalysts on nanostructures of carbon aerogels. Mater Sci Eng B-Adv 148:273–276

    Google Scholar 

  74. Xu J, Wang A, Zhang T (2012) A two-step synthesis of ordered mesoporous resorcinol–formaldehyde polymer and carbon. Carbon 50:1807–1816

    Google Scholar 

  75. Bruno MM, Cotella NG, Maria C, Miras MC, Barbero CA (2010) A novel way to maintain resorcinol–formaldehyde porosity during drying: stabilization of the sol–gel nanostructure using a cationic polyelectrolyte. Colloid Surface A 362:28–32

    Google Scholar 

  76. Wiener M, Reichenauer G, Scherb T, Fricke J (2004) Accelerating the synthesis of carbon aerogel precursors. J Non-Cryst Solids 350:126–130

    Google Scholar 

  77. Berthon S, Barbieri O, Ehrburger-Dolle F, Geissler E, Achard P, Bley F et al (2001) DALS and SAXS investigations of organic gels and aerogels. J Non-Cryst Solids 285:154–161

    Google Scholar 

  78. Pröbstle H, Schmitt C, Fricke J (2002) Button cell supercapacitors with monolithic carbon aerogels. J Power Sources 105:189–194

    Google Scholar 

  79. Tonanon N, Siyasukh A, Tanthapanichakoon W, Nishihara H, Mukai SR, Tamon H (2005) Improvement of mesoporosity of carbon cryogels by ultrasonic irradiation. Carbon 43:525–531

    Google Scholar 

  80. Tonanon N, Siyasukh A, Wareenin Y, Charinpanitkul T, Tanthapanichakoon W, Nishihara H (2005) 3D interconnected macroporous carbon monoliths prepared by ultrasonic irradiation. Carbon 43:2808–2811

    Google Scholar 

  81. Tonanon N, Wareenin Y, Siyasukh A, Tanthapanichakoon W, Nishihara H, Mukai SR (2006) Preparation of resorcinol formaldehyde (RF) carbon gels: use of ultrasonic irradiation followed by microwave drying. J Non-Cryst Solids 352:5683–5686

    Google Scholar 

  82. Siyasukh A, Maneeprom P, Larpkiattaworn S, Tonanon N, Tanthapanichakoon W, Tamon H et al (2008) Preparation of a carbon monolith with hierarchical porous structure by ultrasonic irradiation followed by carbonization, physical and chemical activation. Carbon 46:1309–1315

    Google Scholar 

  83. Suslikck KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295–326

    Google Scholar 

  84. Suslikck KS, Didenko Y, Fang MM, Hyeon T, Kolbeck KJ, Mcnamarall WB (1999) Acoustic cavitation and its chemical consequences. Philos Trans R Soc Lond A 357:335–353

    Google Scholar 

  85. Blanco E, Esquivias L, Litran R, Pinero M, Ramírez del Solar M, Rosa-Fox N (1999) Sonogels and derived materials. Appl Organometal Chem 13:399–418

    Google Scholar 

  86. Mayer ST, Kaschmitter JL, Pekala RW (1993) US Patent, 5 420 168, WO 9, 422, 943

  87. Zanto EJ, Al-Muhtsaseb SA, Ritter SA (2002) Sol gel derived carbon aerogels and xerogels: design of experiments approach to materials synthesis. Ind Eng Chem Res 41:3151–3162

    Google Scholar 

  88. Quin G, Guo S (1999) Drying of RF gels with supercritical acetone. Carbon 37:1168–1169

    Google Scholar 

  89. Tamon H, Ishizaka H, Yamamoto T, Suzuki T (2000) Influence of freeze-drying conditions on the mesoporosity of organic gels and carbon precursors. Carbon 38:1099–1105

    Google Scholar 

  90. Yamamoto Y, Sugimoto T, Suzuki T, Mukai SR, Tamon H (2002) Preparation and characterization of carbon gels microspheres. Carbon 40:1345–1351

    Google Scholar 

  91. Nishihara H, Mukai SR, Tamon H (2004) Preparation of, resorcinol-formaldehyde carbon cryogel microhoneycombs. Carbon 42:899–901

    Google Scholar 

  92. Aymè-Perrot D, Walter S, Gabelica Z, Valange S (2008) Evaluation of carbon cryogels used as cathodes for no-flowing zinc-bromines storage cells. J Power Sources 175:644–650

    Google Scholar 

  93. Bogdal D, Penczek P, Pielichowski J, Prociak A (2003) Microwave assisted synthesis, crosslinking, and processing of polymeric materials. Adv Polym Sci 163:193–263

    Google Scholar 

  94. Yamamoto T, Nishimura T, Suzuki T, Tamon H (2001) Effect of drying method on mesoporosity of resorcinol–formaldehyde drygel and carbon gel. Drying Technol 19:1319–1333

    Google Scholar 

  95. Zubizarreta L, Arenillas A, Domínguez A, Menéndez JA, Pis JJ (2008) Development of microporous carbon xerogels by controlling synthesis conditions. J Non-Cryst Solids 354:817–825

    Google Scholar 

  96. Zubizarreta L, Arenillas A, Menendez JA, Pis JJ, Pirard J, Job N (2008) Microwave drying as an effective method to obtain porous carbon xerogels. J Non-Cryst Solids 354:4024–4026

    Google Scholar 

  97. Gallegos-Suárez E, Pérez-Cadenas AF, Maldonado-Hódar FJ, Carrasco-Marín F (2012) On the micro- and mesoporosity of carbon aerogels and xerogels. The role of the drying conditions during the synthesis processes. Chem Eng J 181–182:851–855

    Google Scholar 

  98. Kang KY, Hong SJ, Lee BI, Lee JS (2008) Enhanced electrochemical capacitance of nitrogen-doped carbon gels synthesized by microwave-assisted polymerization of resorcinol and formaldehyde. Electrochem Commun 10:1105–1108

    Google Scholar 

  99. Calvo EG, Ania CO, Zubizarreta L, Menéndez JA, Arenillas A (2010) Exploring new routes in the synthesis of carbon xerogels for their application in electric double-layer capacitors. Energy Fuels 24:3334–3339

    Google Scholar 

  100. Calvo EG, Juarez-Perez EJ, Menéndez JA, Arenillas A (2011) Fast microwave assisted synthesis of tailored mesoporous carbon xerogels. J Colloid Interface Sci 357:541–547

    Google Scholar 

  101. Juarez-Perez EJ, Calvo EG, Arenillas A, Menéndez JA (2010) Precise determination of the point of sol–gel transition carbon gel synthesis using a microwave heating method. Carbon 48:3305–3308

    Google Scholar 

  102. Moreno AH, Arenillas A, Calvo EG, Bermúdez JM, Menéndez JA (2013) Carbonisation of resorcinol–formaldehyde organic xerogels: effect of temperature, particle size and heating rate on the porosity of carbon xerogels. J Anal Appl Pyrol 100:111–116

    Google Scholar 

  103. Calvo EG, Ferrera-Lorenzo N, Menéndez JA, Arenillas A (2013) Microwave synthesis of micro-mesoporous activated carbon xerogels for high performance supercapacitors. Microporous Mesoporous Mater 168:206–212

    Google Scholar 

  104. Menéndez JA, Juárez-Pérez EJ, Ruiz-Sánchez E, Calvo EG, Arenillas A (2012) A microwave-based method for the synthesis of carbon xerogel spheres. Carbon 50:3555-3360

    Google Scholar 

  105. Foo KY, Hameed BH (2011) Preparation and characterization of activated carbon from pistachio nut shells via microwave-induced chemical activation. Biomass Bioenerg 35:3257–3261

    Google Scholar 

  106. Foo KY, Hameed BH (2012) Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation. Bioresource Technol 104:679–686

    Google Scholar 

  107. Kubota M, Hata A (2009) Preparation of activated carbon from phenolic resin by KOH chemical activation under microwave heating. Carbon 47:2805–2811

    Google Scholar 

  108. Petričević R, Reichenauer G, Bock V, Emmerling A, Fricke J (1998) Structure of carbon aerogels near the gelation limit of the resorcinol–formaldehyde precursor. J Non-Cryst Solids 225:41–45

    Google Scholar 

  109. Shen J, Hou J, Guo Y, Xue H, Wu G, Zhou B (2005) Microstructure control of RF and carbon aerogels prepared by sol-gel process. J Sol–Gel Sci Technol 36:131–136

    Google Scholar 

  110. Li J, Wang X, Wang Y, Huang Q, Gamboa S, Sebastian PJ (2006) Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitors. J Power Sources 158:784–788

    Google Scholar 

  111. Wu D, Fu R, Zhang S, Dresselhaus MS, Dresselhaus G (2004) Preparation of low-density carbon aerogels by ambient pressure drying. Carbon 42:2033–2039

    Google Scholar 

  112. Hebalkar N, Arabale G, Sainkar SR, Pradhan SD, Mulla IS, Vijayamohanan K, Ayyub P, Kulkarni SK (2005) Study of correlation of structural and surface properties with electrochemical behaviour in carbon aerogels. J Mater Sci 40:3777–3782. doi:10.1007/s10853-005-3318-4

    Google Scholar 

  113. Léonard A, Job N, Blacher S, Pirard J, Crine M, Jomaa W (2005) Suitability of convective air drying for the production of porous resorcinol–formaldehyde and carbon xerogels. Carbon 43:1808–1811

    Google Scholar 

  114. Job N, Panariello F, Marien J, Crine M, Pirard J, Léonard A (2006) Synthesis optimization of organic xerogels produced from convective air-drying of resorcinol–formaldehyde gels. J Non Cryst Solids 352:24–34

    Google Scholar 

  115. Job N, Sabatier F, Pirard J, Crine M, Léonard A (2006) Towards the production of carbon xerogel monoliths by optimizing convective drying conditions. Carbon 44:2534–2542

    Google Scholar 

  116. Pekala RW (1993) Structure of organic aerogels. 1. Morphol Scaling Macromol 26:5487–5493

    Google Scholar 

  117. Zubizarreta L, Arenillas A, Pis JJ, Pirard JP, Job N (2009) Studying chemical activation in carbon xerogels. J Mater Sci 44:6583–6590. doi:10.1007/s10853-009-3918-5

    Google Scholar 

  118. Kraiwattanawong K, Tamon H, Praserthdam P (2011) Influence of solvent species used in solvent exchange for preparation of mesoporous carbon xerogels from resorcinol and formaldehyde via subcritical drying. Microporous Mesoporous Mater 138:8–16

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges Spanish financial support from MICINN, project CTQ2011-27935.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luisa Rojas-Cervantes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas-Cervantes, M.L. Some strategies to lower the production cost of carbon gels. J Mater Sci 50, 1017–1040 (2015). https://doi.org/10.1007/s10853-014-8617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8617-1

Keywords

Navigation