Journal of Materials Science

, Volume 50, Issue 1, pp 219–241 | Cite as

Effect of MoO3, Nd2O3, and RuO2 on the crystallization of soda–lime aluminoborosilicate glasses

  • N. Chouard
  • D. Caurant
  • O. Majérus
  • J. L. Dussossoy
  • S. Klimin
  • D. Pytalev
  • R. Baddour-Hadjean
  • J. P. Pereira-Ramos
Original Paper


The effect of adding Nd2O3, MoO3, and RuO2 separately or simultaneously on the crystallization of a soda–lime aluminoborosilicate glass during cooling from the melt or glass heating was studied by DTA, XRD (at room and high temperature), SEM, Raman, and optical absorption. Nd2O3 addition strongly reduces liquid–liquid phase separation and crystallization of calcium and sodium molybdates (CaMoO4 (powellite) and Na2MoO4) in Mo-rich compositions as long as Nd3+ ions remain solubilized in the glassy network. This suggests that (MoO4)2− entities and Nd3+ ions are close to each other in the glass structure (Nd3+ ions would prevent the clustering of molybdate entities). The effect of MoO3 addition in Nd-rich compositions is more complex since an increase of the solubility of Nd2O3 is observed, whereas the nucleation rate of an Nd-rich silicate apatite (Ca2Nd8(SiO4)6O2) in the bulk of the glass increases as soon as molybdates crystallized. The addition of RuO2 has a nucleating effect on apatite crystallization in the bulk but not on molybdates crystallization.


Apatite MoO3 RuO2 Glass Composition Nd2O3 



The authors gratefully acknowledge the CEA for its contribution to the financial support of this study. The authors would like to thank the Chaire ParisTech “Ingénierie Nucléaire” funded by Areva for financial support. D. Thibault that contributed to the experimental of this study is also gratefully acknowledged. The authors would also like to acknowledge O. Boudouma and M. Fialin of the ISTEP of the University of Paris VI (France) for their grateful help respectively for the field emission gun scanning electron microscopy and electron microprobe analysis. I. Giboire (CEA Marcoule, France) is also gratefully acknowledged for providing powellite synthesis experimental procedure.


  1. 1.
    Caurant D, Loiseau P, Majérus O, Aubin-Chevaldonnet V, Bardez I, Quintas A (2009) Glasses, glass–ceramics and ceramics for immobilization of highly radioactive nuclear wastes. Nova Science Publishers, New YorkGoogle Scholar
  2. 2.
    Gras JM, Do Quang R, Masson H, Lieven T, Ferry C, Poinssot C, Debes M, Delbecq JM (2007) Perspectives on the closed fuel cycle: implications for high-level waste matrices. J Nucl Mater 362:383–394CrossRefGoogle Scholar
  3. 3.
    Grambow B (2006) Nuclear waste glasses. How durable? Elements 2:357–364CrossRefGoogle Scholar
  4. 4.
    Chauvin E, Ladirat C, Do Quang R (2009) French industrial vitrification plant: 30 years old and still innovating. Mater Res Soc Symp Proc 1193:249–257CrossRefGoogle Scholar
  5. 5.
    Peuget S, Cachia JN, Jegou C, Deschanels X, Roudil D, Broudic V, Delaye JM, Bart JM (2006) Irradiation stability of R7T7-type borosilicate glass. J Nucl Mater 354:1–13CrossRefGoogle Scholar
  6. 6.
    Donald IW (2010) Waste Immobilization in Glass and Ceramic Based Hosts. Radioactive, Toxic and Hazardous Wastes. Wiley, ChichesterCrossRefGoogle Scholar
  7. 7.
    Ojovan MI (2011) Handbook of advanced radioactive waste conditioning technologies. Woodhead Publishing Limited, CambridgeCrossRefGoogle Scholar
  8. 8.
    Ojovan MI, Lee WE (2007) New developments in glassy nuclear wasteforms. Nova Science Publishers, New YorkGoogle Scholar
  9. 9.
    Ojovan MI, Lee WE (2011) Glassy wasteforms for nuclear waste immobilization. Metall Mater Trans A 42:837–851CrossRefGoogle Scholar
  10. 10.
    Brookes C, Harrison M, Riley A, Steele C (2010) The effect of increased waste loading on the durability of high level waste glass. Mater Res Symp Proc 1265:109–114CrossRefGoogle Scholar
  11. 11.
    Vienna JD (2010) Nuclear waste vitrification in the United States: recent developments and future options. Int J Appl Glass Sci 1:309–321CrossRefGoogle Scholar
  12. 12.
    Crum JV, Turo L, Riley B, Tang M, Kossoy A (2012) Multi-phase glass–ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals. J Am Ceram Soc 95:1297–1303CrossRefGoogle Scholar
  13. 13.
    Dussossoy JL, Schuller S, Advocat T (2007) The formulation of new high level waste glasses with an increased waste loading charges. In: Extended abstracts of the international congress on glass (CD-ROM), StrasbourgGoogle Scholar
  14. 14.
    Guillaumont R (2004) Éléments chimiques à considérer dans l’aval du cycle nucléaire. C R Chim 7:1129–1134CrossRefGoogle Scholar
  15. 15.
    Bardez I, Caurant D, Dussossoy JL, Loiseau P, Gervais C, Ribot F, Neuville DR, Baffier N, Fillet C (2006) Development and characterization of rare earth-rich glassy matrices envisaged for the immobilization of concentrated nuclear waste solutions. Nucl Sci Eng 153:272–284Google Scholar
  16. 16.
    Bardez I, Caurant D, Loiseau P, Dussossoy JL, Gervais C, Ribot F, Neuville DR, Baffier N (2005) Structural characterization of rare earth rich glasses for nuclear waste immobilization. Phys Chem Glasses 46:320–329Google Scholar
  17. 17.
    Pinet O, Dussossoy JL, David C, Fillet C (2008) Glass matrices for immobilizing nuclear waste containing molybdenum and phosphorus. J Nucl Mater 377:307–312CrossRefGoogle Scholar
  18. 18.
    Dunnett BF, Gribble NR, Short R, Turner E, Steele CJ, Riley AD (2012) Vitrification of high molybdenum waste. Glass Technol Eur J Glass Sci Technol A 53:166–171Google Scholar
  19. 19.
    Dunnett BF, Gribble NR, Riley AD, Steele CJ (2009) Initial investigation into the vitrification of high molybdenum solids in borosilicate glass. Mater Res Soc Symp Proc 1193:291–297CrossRefGoogle Scholar
  20. 20.
    Short RJ, Turner E, Dunnett BF, Riley A (2008) Devitrified and phase separated material found in simulated high level nuclear waste glasses containing Ca and Zn additions. Mater Res Soc Symp Proc 1107:261–267CrossRefGoogle Scholar
  21. 21.
    Boucetta H, Podor R, Stievano L, Ravaux J, Carrier X, Casale S, Gossé S, Monteiro A, Schuller S (2012) Mechanism of RuO2 crystallization in borosilicate glass: an original in situ ESEM approach. Inorg Chem 51:3478–3489CrossRefGoogle Scholar
  22. 22.
    Akai T, Nishii J, Yamashita M, Yamanaka H (1997) Chemical behavior of platinum-group metals in oxide glasses. J Non-Cryst Solids 222:304–309CrossRefGoogle Scholar
  23. 23.
    Demin AV, Fedorova MI, Matyunin YI (1996) Localization of platinum-group elements and technetium and the solidification of high-level liquid wastes. Atom Energy 80:178–181CrossRefGoogle Scholar
  24. 24.
    Caurant D, Majérus O, Fadel E, Lenoir M, Gervais C, Pinet O (2007) Effect of molybdenum on the structure and on the crystallization of SiO2–B2O3–Na2O–CaO glasses. J Am Ceram Soc 90:774–783CrossRefGoogle Scholar
  25. 25.
    Majérus O, Caurant D, Quintas A, Dussossoy J-L, Bardez I, Loiseau P (2011) Effect of boron oxide addition on the Nd3+ cations environment in a Nd-rich soda–lime aluminoborosilicate glass. J Non-Cryst Solids 357:2744–2751CrossRefGoogle Scholar
  26. 26.
    Rose PB, Woodward DI, Ojovan MI, Hyatt NC, Lee WE (2011) Crystallisation of a simulated borosilicate high-level waste glass produced on a full-scale vitrification line. J Non-Cryst Solids 357:2989–3001CrossRefGoogle Scholar
  27. 27.
    Magnin M, Schuller S, Caurant D, Majérus O, de Ligny D, Mercier C (2009) Effect of compositional changes on the structure and crystallization tendency of a borosilicate glass containing MoO3. Ceram Trans 207:59–68Google Scholar
  28. 28.
    Schuller S, Pinet O, Penelon B (2011) Liquid–liquid phase separation process in borosilicate liquids enriched in molybdenum and phosphorus oxides. J Am Ceram Soc 94:447–454CrossRefGoogle Scholar
  29. 29.
    Cousi C, Bart F, Phalippou J (2004) Phase separation and crystallisation induced by adding molybdenum and phosphorus to a soda–lime–silica glass. Eur J Glass Sci Technol A 45:65–67Google Scholar
  30. 30.
    Caurant D, Majérus O, Fadel E, Quintas A, Gervais C, Charpentier T, Neuville DR (2010) Structural investigations of borosilicate glasses containing MoO3 by MAS NMR and Raman spectroscopies. J Nucl Mater 396:94–101CrossRefGoogle Scholar
  31. 31.
    Greer BJ, Kroeker S (2012) Characterisation of heterogeneous molybdate and chromate phase assemblages in model nuclear waste glasses by multinuclear magnetic resonance spectroscopy. Phys Chem Chem Phys 14:7375–7383CrossRefGoogle Scholar
  32. 32.
    Kroeker S, Higman C, Michaelis VK, Svenda NB, Schuller S (2010) Precipitation of mixed-alkali molybdates during HLW vitrification. Mater Res Soc Symp Proc 1265:95–101CrossRefGoogle Scholar
  33. 33.
    Magnin M, Schuller S, Mercier C, Trebosc J, Caurant D, Majerus O, Angeli F, Charpentier T (2011) Modification of molybdenum structural environment in borosilicate glasses with increasing content of boron and calcium oxide by 95Mo MAS NMR. J Am Ceram Soc 94:4274–4282CrossRefGoogle Scholar
  34. 34.
    Brinkman K, Fox K, Marra J, Reppert J, Crum J, Tang M (2013) Single phase melt processed powellite (Ba, Ca)MoO4 for the immobilization of Mo-rich nuclear waste. J Alloys Compd 551:136–4142CrossRefGoogle Scholar
  35. 35.
    Taurines T, Boizot B (2012) Microstructure of powellite-rich glass–ceramics: a model system for high level waste immobilization. J Am Ceram Soc 95:1105–1111Google Scholar
  36. 36.
    Mendoza C, Panczer G, de Ligny D, Bardez-Giboire I, Schuller S, Peuget S (2010) CaMoO4 in a molybdenum rich borosilicate glass–ceramic: a spectroscopic study. Ceram Trans 217:43–55Google Scholar
  37. 37.
    Ojovan MI, Juoi JM, Lee WE (2008) Application of glass composite materials for nuclear waste immobilization. J Pak Mater Soc 2:72–76Google Scholar
  38. 38.
    Ojovan MI, Juoi JM, Boccaccini AR, Lee WE (2008) Glass composite materials for nuclear and hazardous waste immobilization. Mater Res Soc Symp Proc 1107:245–252CrossRefGoogle Scholar
  39. 39.
    Kossoy A, Schulze R, Tang M, Safarik DJ, McCabe RJ (2013) Nd-Mo-borosilicate glass–ceramic: synthesis, characterization and response to ionizing radiation. J Nucl Mater 437:216–221CrossRefGoogle Scholar
  40. 40.
    Quintas A, Charpentier T, Majérus O, Caurant D, Dussossoy JL (2007) NMR study of a rare-earth rich aluminoborosilicate glass with varying CaO/Na2O ratio. Appl Magn Reson 32:613–634CrossRefGoogle Scholar
  41. 41.
    Quintas A, Majérus O, Caurant D, Dussossoy JL, Vermaut P (2007) Crystallization of a rare-earth rich aluminoborosilicate glass with varying CaO/Na2O ratio. J Am Ceram Soc 90:712–719CrossRefGoogle Scholar
  42. 42.
    Quintas A, Caurant D, Majérus O, Dussossoy JL, Charpentier T (2008) Effect of changing the rare earth cation type on the structure and crystallization behavior of an aluminoborosilicate glass. Phys Chem Glasses 49:192–197Google Scholar
  43. 43.
    Quintas A, Caurant D, Majérus O, Charpentier T, Dussossoy JL (2009) Effect of compositional variations on charge compensation of AlO4 and BO4 entities and on crystallization tendency of a rare-earth-rich aluminoborosilicate glass. Mater Res Bull 44:1895–1898CrossRefGoogle Scholar
  44. 44.
    Kidari A, Dussossoy JL, Brackx E, Caurant D, Magnin M, Bardez-Giboire I (2012) Lanthanum and neodymium solubility in simplified SiO2–B2O3–Na2O–Al2O3–CaO high level waste glass. J Am Ceram Soc 95:2537–2544CrossRefGoogle Scholar
  45. 45.
    Kidari A, Magnin M, Caraballo R, Tribet M, Doreau F, Peuget S, Dussossoy JL, Bardez-Giboire I, Jegou C (2012) Solubility and partitioning of minor-actinides and lanthanides in alumino-borosilicate nuclear glass. Proc. Chem 7:554–558CrossRefGoogle Scholar
  46. 46.
    Weber WJ (1983) Radiation-induced swelling and amorphization in Ca2Nd8(SiO4)6O2. Radiat Effects 77:295–308CrossRefGoogle Scholar
  47. 47.
    Wald JW, Weber WJ (1984) Effects of self-radiation damage one the leachability of actinide-host phases. Adv Ceram Nucl Waste Manag 8:71–75Google Scholar
  48. 48.
    Weber WJ (1993) Alpha-decay induced amorphization in complex silicate structures. J Am Ceram Soc 76:1729–1738CrossRefGoogle Scholar
  49. 49.
    Weber WJ, Ewing RC, Catlow CRA, Diaz de La Rubia T, Hobbs LW, Kinoshita C, Matzke Hj, Motta AT, Nastasi MA, Salje EHK, Vance ER, Zinkle SJ (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J Mater Res 13:1434–1484CrossRefGoogle Scholar
  50. 50.
    Swain MV (1980) A fracture mechanics description of the microcracking about NiS inclusions in glass. J Non-Cryst Solids 38–39:451–456CrossRefGoogle Scholar
  51. 51.
    Serbena FC, Zanotto ED (2012) Internal residual stresses in glass–ceramics: a review. J Non-Cryst Solids 358:975–984CrossRefGoogle Scholar
  52. 52.
    Orlhac X (1999) Etude de la stabilité thermique du verre nucléaire. Modélisation de son évolution à long terme. Ph.D. thesis of the University of Montpellier 2Google Scholar
  53. 53.
    Pacaud F, Fillet C, Jacquet-Francillon N (1992) Effect of platinoids on French LWR reference glass properties. Mater Res Soc Symp Proc 257:161–167CrossRefGoogle Scholar
  54. 54.
    Mitamura H, Murakami T, Banba T (1985) Crystalline phases in a devitrified simulated high-level waste glass containing the elements of the platinum group. J Nucl Mater 136:104–116CrossRefGoogle Scholar
  55. 55.
    Pflieger R, Lefebvre L, Malki M, Allix M, Grandjean A (2009) Behaviour of ruthenium dioxide particles in borosilicate glasses and melts. J Nucl Mater 389:450–457CrossRefGoogle Scholar
  56. 56.
    Igarashi H, Kawamura K, Takahashi T (1992) Effect of noble metal elements on viscosity and electrical resistivity of simulated vitrified products for high-level liquid waste. Mater Res Soc Symp Proc 257:169–176CrossRefGoogle Scholar
  57. 57.
    Kelm M, Oser B (1992) The platinum metals in HLLW: glass products. Mater Res Soc Symp Proc 257:177–182CrossRefGoogle Scholar
  58. 58.
    Lutze W, Gong W, Perez-Cardenas FC, Matlack KS, Pegg IL, Schill P (2007) Testing and modelling the behaviour of platinoids during vitrification of high level radioactive waste. Part 1. Glass Technol 48:263–275Google Scholar
  59. 59.
    Krause C, Luckscheiter B (1991) Properties and behavior of the platinum group metals in the glass resulting from the vitrification of simulated nuclear fuel reprocessing waste. J Mater Res 6:2535–2546CrossRefGoogle Scholar
  60. 60.
    Simonnet C, Grandjean A, Phalippou J (2005) Electrical behavior of platinum-group metals in glass-forming oxide melts. J Nucl Mater 336:243–350CrossRefGoogle Scholar
  61. 61.
    Pinet O, Mure S (2009) Redox behavior of platinum-group metals in nuclear glass. J Non-Cryst Solids 355:221–227CrossRefGoogle Scholar
  62. 62.
    Caurant D, Majérus O, Loiseau P, Bardez I, Baffier N, Dussossoy JL (2006) Crystallization of neodymium-rich phases in silicate glasses developed for nuclear waste immobilization. J Nucl Mater 354:143–162CrossRefGoogle Scholar
  63. 63.
    Chouard N, Caurant D, Majérus O, Dussossoy JL, Ledieu A, Peuget S, Baddour-Hadjean R, Pereira-Ramos JP (2011) Crystallization and structural study of a MoO3-rich aluminoborosilicate glass with increasing Nd2O3 content. J Non-Cryst Solids 357:2752–2762CrossRefGoogle Scholar
  64. 64.
    Chouard N, Caurant D, Majérus O, Dussosoy JL, Ledieu A, Klimin S, Pytalev D (2010) Effect of molybdenum and ruthenium on the crystallization tendency of a new nuclear glass containing high rare-earth concentrations. Mater Res Soc Symp Proc 1265:115–120Google Scholar
  65. 65.
    Cobb WT, Hrma P (1991) Behavior of RuO2 in a glass melt. Ceram Trans 23:233–237Google Scholar
  66. 66.
    Sundaram SK, Perez JM (2000) Noble metals and spinel settling in high level waste glass melters. Report PNNL-13347Google Scholar
  67. 67.
    Hrma P (2010) Crystallization during processing of nuclear waste glass. J Non-Cryst Solids 356:3019–3025CrossRefGoogle Scholar
  68. 68.
    Long DA (1977) Raman spectroscopy. McGraw-Hill, New-York, p 276Google Scholar
  69. 69.
    Toumi M, Smiri-Dogguy L, Bulou A (2002) Structure cristalline et spectres Raman polarises de Na1.5Sm8.5(SiO4)6FO. Ann Chim Sci Mater 27:17–26CrossRefGoogle Scholar
  70. 70.
    Rodriguez-Reyna E, Fuentes AF, Maczka M, Hanuza J, Boulahya K, Amador U (2006) Structural, microstructural and vibrational characterization of apatite-type lanthanum silicates prepared by mechanical milling. J Solid State Chem 179:522–531CrossRefGoogle Scholar
  71. 71.
    Hardcastle FD, Wachs IE (1990) Determination of molybdenum–oxygen bond distances and bond orders by Raman spectroscopy. J Raman Spectrosc 21:683–691CrossRefGoogle Scholar
  72. 72.
    Sarantopoulou E, Raptis C, Ves S, Christofilos D, Kourouklis GA (2002) Temperature and pressure dependence of Raman-active phonons of CaMoO4: an anharmonicity study. J Phys: Condens Matter 14:8925–8938Google Scholar
  73. 73.
    Porto SPS, Scott JF (1967) Raman spectra of CaWO4, SrWO4, CaMoO4 and SrMoO4. Phys Rev 157:716–719CrossRefGoogle Scholar
  74. 74.
    Christofilos D, Kourouklis GA, Ves S (1995) A high pressure Raman study of calcium molybdate. J Phys Chem Solids 56:1125–1129CrossRefGoogle Scholar
  75. 75.
    Mahadevan Pillai VP, Prodeep T, Bushiri MJ (1997) Vibrational spectroscopic studies of FeClMoO4, Na2MoO4 and Na2MoO4 2H2O/D2O. Spectrochim Acta Part A 53:867–876CrossRefGoogle Scholar
  76. 76.
    Pope SJA, West YD (1995) Use of the FT Raman spectrum of Na2MoO4 to study sample heating by the laser. Spectrochim Acta Part A 51:2011–2017CrossRefGoogle Scholar
  77. 77.
    Luz-Lima C, Saraiva GD, Filho Souza AG, Paraguassu W, Freire PTC, Mendes Filho J (2010) Raman spectroscopy study of Na2MoO4 2H2O and Na2MoO4 under hydrostatic pressure. J Raman Spectrosc 41:576–581CrossRefGoogle Scholar
  78. 78.
    Bramnik KG, Ehrenberg H (2004) Study of the Na2O–MoO3 system. Na6Mo11O36: a new oxide with anatase-related structure, and the crystal structures of Na2MoO4. Z Anorg Allg Chem 630:1336–1340CrossRefGoogle Scholar
  79. 79.
    Felsche J (1972) Rare earth silicates with the apatite structure. J Solid State Chem 5:266–275CrossRefGoogle Scholar
  80. 80.
    Zhao D, Li L, Davis LL, Weber WJ, Ewing RC (2001) Gadolinium borosilicate glass-bonded Gd-silicate apatite: a glass–ceramic nuclear waste form for actinides. Mater Res Soc Symp Proc 663:199–206CrossRefGoogle Scholar
  81. 81.
    Chouard N (2011) PhD Thesis, University of Paris VI. Accessed 12 Dec 2011
  82. 82.
    Magnin M, Schuller S, Caurant D, Majérus O, de Ligny D, Advocat T (2008) Phase separation and crystallization in soda–lime borosilicate glass enriched in MoO3. In: Proceedings of 3rd Atalante international conference: nuclear fuel cycles for a sustainable future, Montpellier. Accessed 22 May 2014
  83. 83.
    Magnin M (2009) PhD Thesis, University of Paris VIGoogle Scholar
  84. 84.
    Cormier L, Majérus O, Neuville DR, Calas G (2006) Temperature-induced structural modifications between alkali borate glasses and melts. J Am Ceram Soc 89:13–19CrossRefGoogle Scholar
  85. 85.
    Calas G, Le Grand M, Galoisy L, Ghaleb D (2003) Structural role of molybdenum in nuclear glasses: an EXAFS study. J Nucl Mater 322:15–20CrossRefGoogle Scholar
  86. 86.
    Trapp HLV, Stevels JM (1959) Physical properties of invert glasses. Glastech Ber 32:32–52Google Scholar
  87. 87.
    Lucas J (1989) Fluoride glasses. J Mater Sci 24:1–13. doi: 10.1007/bf00660926 CrossRefGoogle Scholar
  88. 88.
    Wang WH, Dong C, Shek CH (2004) Bulk metallic glasses. Mater Sci Eng R Rep 44:45–89CrossRefGoogle Scholar
  89. 89.
    Mysen BO, Richet P (2005) Silicate glasses and melts. Elsevier, AmsterdamGoogle Scholar
  90. 90.
    Deschamps T, Ollier N, Vezin H, Gonnet C (2012) Clusters dissolution of Yb3+ in codoped SiO2–Al2O3–P2O5 glass fiber and its relevance to photodarkening. J Chem Phys 136:014503-1–014503-4CrossRefGoogle Scholar
  91. 91.
    Kashchieva E, Petrov I, Aleksandrov L, Iordanova R, Dimitriev Y (2012) Microstructure of multicomponent borosilicate glasses containing MoO3. Phys Chem Glasses: Eur J Glass Sci Technol B 53:264–270Google Scholar
  92. 92.
    Henry N, Deniard P, Jobic S, Brec R, Fillet C, Bart F, Grandjean A, Pinet O (2004) Heat treatments versus microstructure in a molybdenum-rich borosilicate. J Non-Cryst Solids 333:199–205CrossRefGoogle Scholar
  93. 93.
    Schleid T, Hartenbach I (2011) Sheelite-type sodium neodymium(III) ortho-oximolybdate(VI) NaNd[MoO4]2. Acta Cryst E 67:i71CrossRefGoogle Scholar
  94. 94.
    de Ligny D, Panczer G, Caurant D, Neuville DR (2008) Contribution of neodymium luminescence to the crystal growth study of a silicate apatite in a glassy matrix. Opt Mater 30:1694–1698CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • N. Chouard
    • 1
    • 2
    • 6
  • D. Caurant
    • 1
  • O. Majérus
    • 1
  • J. L. Dussossoy
    • 3
  • S. Klimin
    • 4
  • D. Pytalev
    • 4
  • R. Baddour-Hadjean
    • 5
  • J. P. Pereira-Ramos
    • 5
  1. 1.Institut de Recherche de Chimie ParisCNRS – Chimie ParisTechParisFrance
  2. 2.Laboratoire d’Etude et Développement des Matrices de ConditionnementCEA/DEN/DTCD/SECMBagnols-sur-CèzeFrance
  3. 3.Laboratoire des Matériaux et Procédés ActifsCEA/DEN/DTCD/SECM/LMPABagnols-sur-CèzeFrance
  4. 4.Institute of SpectroscopyRussian Academy of SciencesTroitskRussia
  5. 5.Groupe Electrochimie et Spectroscopie des Matériaux (UMR CNRS 7182)Institut de Chimie et des Matériaux Paris-EstThiaisFrance
  6. 6.BU Recyclage DIRP/RDP, Tour ArevaParis - La DéfenseFrance

Personalised recommendations