Journal of Materials Science

, Volume 50, Issue 1, pp 203–209 | Cite as

Subsolidus phase relations of Li2O–FeO–P2O5 system and the solid solubility of Li1+x Fe1−x PO4 compounds under Ar/H2 atmosphere

  • Xinghao Lin
  • Yanming Zhao
  • Youzhong Dong
  • Zhiyong Liang
  • Danlin Yan
  • Xudong Liu
  • Quan Kuang
Original Paper


The phase relation of Li2O–FeO–P2O5 ternary system under the 95 %Ar + 5 %H2 atmosphere has been systematically investigated by X-ray diffraction (XRD), and there exist 8 binary compounds, 4 ternary compounds, 2 two-phase regions, and 17 three-phase regions. No other new lithium ferrous phosphates can be existed in the Li2O–FeO–P2O5 ternary system under the 95 %Ar + 5 %H2 atmosphere. In this system, the Li1+x Fe1−x PO4 solid solution phase with the homogeneous range of −0.15 ≤ x ≤ 0.06 is determined. Their corresponding lattice parameters are obtained by the refinement results, and the results show that the lattice parameters (a, b, c, V) vary linearly with the increasing amount of excess Li-ion (x > 0) or with the increasing amount of excess Fe-ion (x < 0). The phase diagram determined in this paper can provide more information about the phase relation of Li2O–FeO–P2O5 ternary system and serve as a guide for the future investigation of lithium iron phosphates in this system.


LiFePO4 Li2O Monoclinic System Triclinic System Alumina Boat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by NSFC Grant supported through NSFC Committee of China (No. 51172077 & 51372089), the Foundation supported through the Science and Technology Bureau of Guangdong Government (No. S2011020000521), and the foundation of Key Laboratory of Clean Energy Materials of Guangdong Higher Education Institute (No. KLB11003).


  1. 1.
    Anolini E (2004) LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ionics 170:159–171CrossRefGoogle Scholar
  2. 2.
    Thomas MGSR, David WIF, Goodenough JB (1985) Synthesis and structural characterization of the normal spinel Li[Ni2]O4. Mater Res Bull 20:1137–1146CrossRefGoogle Scholar
  3. 3.
    Kanamura K, Naito H, Yao T, Takehara Z (1996) Structure change of the LiMn2O4 spinel structure induced by extraction of lithium. J Mater Chem 6:33–36CrossRefGoogle Scholar
  4. 4.
    Lu ZH, MacNeil DD, Dahn JR (2001) Layered Li[NixCo1-2xMnx]O2 cathode materials for lithium-Ion batteries. Electrochem Solid-State Lett 4:A200–A203CrossRefGoogle Scholar
  5. 5.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRefGoogle Scholar
  6. 6.
    Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128CrossRefGoogle Scholar
  7. 7.
    MacNeil DD, Lu ZH, Chen ZH, Dahn JR (2002) A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. J Power Sources 108:8–14CrossRefGoogle Scholar
  8. 8.
    Takahashi M, Tobishima S, Takei K, Sakurai Y (2002) Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics 148:283–289CrossRefGoogle Scholar
  9. 9.
    Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97–98:503–507CrossRefGoogle Scholar
  10. 10.
    Qiu YJ, Geng YH, Yu J, Zuo XB (2014) High-capacity cathode for lithium-ion battery from LiFePO4/(C + Fe2P) composite nanofibers by electrospinning. J Mater Sci 49:504–509. doi: 10.1007/s10853-013-7727-5 CrossRefGoogle Scholar
  11. 11.
    Wang JJ, Sun XL (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5:5163–5185CrossRefGoogle Scholar
  12. 12.
    Yi TF, Li XY, Liu HP, Shu J, Zhu YR, Zhu RS (2012) Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery. Ionics 18:529–539CrossRefGoogle Scholar
  13. 13.
    Churikov AV, Ivanishchev AV, Ushakov AV, Gamayunova IM, Leenson IA (2013) Thermodynamics of LiFePO4 solid-phase synthesis using iron (II) oxalate and ammonium dihydrophosphate as precursors. J Chem Eng Data 58:1747–1759CrossRefGoogle Scholar
  14. 14.
    Churikov A, Gribov A, Bobyl A, Kamzin A, Terukov E (2014) Mechanism of LiFePO4 solid-phase synthesis using iron (II) oxalate and ammonium dihydrophosphate as precursors. Ionics 20:1–13CrossRefGoogle Scholar
  15. 15.
    Ong SP, Wang L, Kang B, Ceder G (2008) Li–Fe–P–O2 phase diagram from first principles calculations. Chem Mater 20:1798–1807CrossRefGoogle Scholar
  16. 16.
    Ji LN, Li JB, Chen YQ, Luo J, Liang JK, Rao GH (2009) Subsolidus phase relations of the ZnO-Li2O-P2O5 system. J. Alloys Comp 486:352–356CrossRefGoogle Scholar
  17. 17.
    Tien TY, Hummel FA (1961) Studies in Lithium Oxide Systems: XI, Li2O–B2O3–P2O5. J Am Ceram Soc 44:206–208CrossRefGoogle Scholar
  18. 18.
    Guitel JC, Tordjman I (1976) Structural crystallography and crystal chemistry. Acta Crystallogr B 32:2960–2966CrossRefGoogle Scholar
  19. 19.
    Murashova EV, Chudinova NN (2001) Synthesis and crystal structures of lithium polyphosphates, LiPO3, Li4H(PO3)5, and LiMn(PO3)3. Crystallogr Rep 46:942–947CrossRefGoogle Scholar
  20. 20.
    Ben-Chaabane T, Smiri-Dogguy L, Laligant Y, LeBail A (1998) Li6P6O18: X-ray powder structure determination of lithium cyclohexaphosphate. Eur J Solid State Inorg Chem 35:255–264CrossRefGoogle Scholar
  21. 21.
    Yakubovich OV, Mel’nikov OK (1994) The crystal structure of Li4[P2O7]. Crystallogr Rep 39:737–742Google Scholar
  22. 22.
    Daidouh A, Veiga ML, Pico C (1997) Martinez-Ripoll, M. A New Polymorph of Li4P2O7. Acta Crystallogr C 53:167–169CrossRefGoogle Scholar
  23. 23.
    Keffer C, Mighell AD, Mauer F, Swanson H, Block S (1967) The Crystal Structure of Twinned Low-Temperature Lithium Phosphate. Inorg Chem 6:119–125CrossRefGoogle Scholar
  24. 24.
    Bondareva OS, Simonov MA, Belov NV (1978) The crystal structure of the synthetic analogue of the lithiophospate gamma-Li3PO4. Soviet Physics–Doklady 23:287–288Google Scholar
  25. 25.
    Weil M, Glaum R (1998) Crystallization of ultraphosphates via the gas phase. The crystal structures of FeP4011, ZnP4O11 and CdP4O11. Eur J Solid State Inorg Chem 35:495–508CrossRefGoogle Scholar
  26. 26.
    Nord AG, Ericsson T, Werner PE (1990) The crystal structure of iron(II) tetrametaphosphate Fe2P4O12. Zeitschrift fuer Kristallographie 192:83–90Google Scholar
  27. 27.
    Hoggins JT, Swinnea JS, Steinfink H (1983) Crystal structure of Fe2P2O7. J Solid State Chem 47:278–283CrossRefGoogle Scholar
  28. 28.
    Stefanidis T, Nord AG (1982) The crystal structure of iron(II) diphosphate, Fe2P2O7. Zeitschrift fuer Kristallographie 159:255–264Google Scholar
  29. 29.
    Parada C, Perles J, Saez-Puche R, Ruiz-Valero C (2003) Snejko N. Crystal growth, structure and magnetic properties of a new polymorph of Fe2P2O7. Chem Mater 15:3347–3351CrossRefGoogle Scholar
  30. 30.
    Kostiner E, Rea JR (1974) Crystal structure of ferrous phosphatefe2(P2O4)2. Inorg Chem 13:2876–2880CrossRefGoogle Scholar
  31. 31.
    Warner JK, Cheetham AK, Nord AG, von Dreele RB, Yethiraj M (1992) Magnetic structure of iron(II) phosphate, sarcopside, Fe3(PO4)2. J Mater Chem 2:191–196CrossRefGoogle Scholar
  32. 32.
    Bouchdoug M, Courtois A, Gerardin R, Steinmetz J, Gleitzer C (1982) Preparation et etude d’un oxyphosphate Fe4(PO4)2O. J Solid State Chem 42:149–157CrossRefGoogle Scholar
  33. 33.
    Dong YZ, Zhao YM, Fu P, Zhou H, Hou XM (2008) Phase relations of Li2O-FeO-B2O3 ternary system and electrochemical properties of LiFeBO3 compound. J. Alloys Comp 461:585–590CrossRefGoogle Scholar
  34. 34.
    Liang ZY, Zhao YM, Ouyang LZ, Dong YZ, Kuang Q, Lin XH, Liu XD, Yan DL (2014) Synthesis of carbon-coated Li3VO4 and its high electrochemical performance as anode material for lithium-ion batteries. J Power Sources 252:244–247CrossRefGoogle Scholar
  35. 35.
    Garcia-Moreno O, Alvarez-Vega M, Garcia-Alvarado F, Garcia-Jaca J, Amores JMG, Sanjuan ML, Amador U (2001) Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries: A new high-pressure form of LiMPO4(M)Fe and Ni). Chem Mater 13:1570–1576CrossRefGoogle Scholar
  36. 36.
    Bjoerling CO, Westgren A (1938) Minerals of the Varutrask pegmatite: IX. X-ray studies on triphylite, varulite, and their oxidation products. Geologiska Foereningens i Stockholm Foerhandlingar 60:67–72CrossRefGoogle Scholar
  37. 37.
    Delacourt C, Rodriguez-Carvajal J, Schmitt B, Tarascon JM, Masquelier C (2005) Crystal chemistry of the olivine-type LixFePO4 system (0 ≤ x ≤ 1) between 25 and 370◦C. Solid State Sci 7:1506–1516CrossRefGoogle Scholar
  38. 38.
    Yakubovich OV, Simonov MA, Belov NV (1977) The crystal structure of a synthetic triphylite LiFe(PO4). Soviet Physics–Doklady 22:347–348Google Scholar
  39. 39.
    Nishimura H, Nakamura M, Natsui R, Yamada A (2010) New Lithium Iron Pyrophosphate as 3.5 V Class Cathode Material for Lithium Ion Battery. J Am Chem Soc 132:13596–13597CrossRefGoogle Scholar
  40. 40.
    Ramana CV, Ait-Salah A, Julien CM (2006) Structure of LiFe2P3O10 studied by transmission electron microscopy. Mater Sci Eng, B 135:78–81CrossRefGoogle Scholar
  41. 41.
    Genkina EA, Maksimov BA, Kabalov YK, Mel’nikov OE (1983) Crystal structure of Li, Fe metaphosphate LiFeP3O9. Soviet Physics–Doklady 28:426–428Google Scholar
  42. 42.
    Zhuang VV, Allen JL, Ross PN, Guo J-H, Jow TR (2006) Electronic properties of LiFePO4 and Li doped LiFePO4. ECS Trans 1:69–72CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xinghao Lin
    • 1
  • Yanming Zhao
    • 2
    • 3
  • Youzhong Dong
    • 2
  • Zhiyong Liang
    • 1
  • Danlin Yan
    • 1
  • Xudong Liu
    • 1
  • Quan Kuang
    • 2
  1. 1.School of Material Science and EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.School of PhysicsSouth China University of TechnologyGuangzhouPeople’s Republic of China
  3. 3.State Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations