Skip to main content

Advertisement

Log in

Effect of iron on the solubility of hydrogen in tantalum

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pressure-composition-isotherms for Ta–Fe–H systems have been investigated in the temperature range 673–873 K. Tantalum–iron alloys (Ta–xFe, x = 0, 1.6 and 3.2 atom  % Fe) were prepared by arc melting using high purity elements. The equilibrium solid solubility of hydrogen in the alloys decreases with an increase of iron content. Thermodynamic parameters of the solution process—the Gibb’s free energy, enthalpy, and entropy, for each of the solutions have been calculated. The relative partial molar enthalpy becomes less negative with increase in iron content, whereas the entropy values are nearly constant for these alloys. The solubility changes were explained on the basis of change in lattice strain energy of tantalum due to iron addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rothenberger KS, Howard BH, Killmeyer RP, Cugini AV, Enick RM, Bustamante F, Ciacoo MV, Morreale BD, Buxbaum RE (2003) Evaluation of tantalum-based materials for hydrogen separation at elevated temperatures and pressures. Membr Sci 218:19–37

    Article  Google Scholar 

  2. Kim SM, Chandra D, Pal NK, Dolan MD, Chien WM, Talekar A, Lamb J, Paglieri SN, Flanagan TB (2012) Hydrogen permeability and crystallization kinetics in amorphous Ni–Nb–Zr alloys. Int J Hydrog Energy 37:3904–3913

    Article  Google Scholar 

  3. Rothenberger KS, Howard BH, Cugini AV, Enick RM, Bustamante F, Ciacoo MV, Morreale BD, Buxbaum RE (2002) Hydrogen permeability of tantalum based membrane materials at elevated temperatures and pressures. Fuel Chem Div Prepr 47(2):814–815

    Google Scholar 

  4. Steward SA (1983) Review of hydrogen isotope permeability through metals, Lawrence Livermore National Laboratory Report UCRL–53441

  5. Owen OV, Scott TE (1972) Relation between hydrogen embrittlement and the formation of hydrides in group V transition metals. Metall Trans 3:1715–1726

    Article  Google Scholar 

  6. Bishop CR, Stern M (1961) A method for prevention of hydrogen embrittlement of tantalum in aqueous media. Corrosion 17:379t–385t

    Article  Google Scholar 

  7. Kim KH, Shim JH, Lee BJ (2012) Effect of alloying elements (Al Co, Fe, Ni) on the solubility of hydrogen in vanadium: a thermodynamic calculation. Int J Hydrog Energy 37:7836–7847

    Article  Google Scholar 

  8. Amano M, Komaki M, Nishimura C (1991) Hydrogen permeation characteristics of Pd-coated V–Ni alloy membrane. J Less Common Met 172–174:727–731

    Article  Google Scholar 

  9. Matsumoto T, Sasaki Y, Hihara M (1975) Interaction between interstitial hydrogen and substitutional solute atoms in solid solution of niobium-base ternary alloys. J Phys Chem Solids 36:215–220

    Article  Google Scholar 

  10. Burch R, Francis NB (1976) Pressure-composition-temperature relationships in niobium alloy–hydrogen systems. J Less Common Met 49:371–384

    Article  Google Scholar 

  11. Zhang Y, Ozaki T, Komaki M, Nishimura C (2002) Hydrogen permeation characteristics of vanadium–aluminum alloys. Scripta Mater 47:601–606

    Article  Google Scholar 

  12. Ozaki T, Zhang Y, Komaki M, Nishimura C (2003) Preparation of palladium-coated V and V–15Ni membranes for hydrogen purification by electroless plating technique. Int J Hydrog Energy 28:297–302

    Article  Google Scholar 

  13. Lynch JF, Reilly JJ, Millot F (1978) The absorption of hydrogen by binary vanadium–chromium alloys. J Phys Chem Solids 39:883–890

    Article  Google Scholar 

  14. Inoue A, Katsura M, Sano T (1977) The solubility of hydrogen in Nb–Mo alloy. J Less Common Met 55:9–23

    Article  Google Scholar 

  15. Nakajima H, Yoshioka M, Koiwa M (1987) Electromigration of hydrogen in vanadium and its alloys. Acta Met 35(11):2731–2736

    Article  Google Scholar 

  16. Eguchi T, Morozumi S (1974) Solubility of hydrogen in molybdenum and its alloys. Nippon Kinzoku Gakkai-shi 38(11):1019–1025

  17. Kumar S, Taxak M, Krishnamurthy N, Suri AK, Tiwari GP (2012) Terminal solid solubility of hydrogen in V–Al solid solution. Int J Refract Met Hard Mater 31:76–81

    Article  Google Scholar 

  18. Fleury E, Suh JY, Kim D, Jeong CH, Park JH (2012) Hydrogen permeation characteristics of rolled V85Al10Co5 alloys. Curr Appl Phys 12:1131–1138

    Article  Google Scholar 

  19. Dolan MD, Song G, Liang D, Kellam ME, Chandra D, Lamb JH (2011) Hydrogen transport through V85Ni10M5 alloy membranes. J Membr Sci 373:14–19

    Article  Google Scholar 

  20. Yukawa H, Yamashita D, Ito S, Morinaga M, Yamaguchi S (2003) Compositional dependence of hydriding properties of vanadium alloys at low hydrogen pressures. J Alloys Compd 356–357:45–49

    Article  Google Scholar 

  21. Gypen LA, Brabers M, Deruyttere A (1984) Corrosion resistance of tantalum base alloys. Elimination of hydrogen embrittlement in tantalum by substitutional alloying. Mater Corros 35:37–46

    Article  Google Scholar 

  22. Swartzendruber LJ, Paul E (1986) The Fe–Ta (iron–tantalum) System. Bull Alloy Phase Diagr 7(3):254–259

    Article  Google Scholar 

  23. Semboshi S, Masahashi N, Hanada S (2003) Hydrogen-induced fragmentation in Ta–Ni alloy. J alloys Comp 359:236–243

    Article  Google Scholar 

  24. Taxak M, Kumar S, Kalekar B, Krishnamurthy N (2013) Effect of nickel addition on the solubility of hydrogen in tantalum. Int J Hydrog Energy 38:7561–7568

    Article  Google Scholar 

  25. Taxak M, Kumar S, Krishnamurthy N (2013) Thermodynamic parameters for the Ta–Cr–H solid solution from equilibrium P-C-T data. J Chem Thermodyn 67:48–54

    Article  Google Scholar 

  26. Taxak M, Kumar S, Krishnamurthy N, Suri AK, Tiwari GP (2012) Change in lattice parameter of tantalum due to dissolved hydrogen. Int J Process Appl Ceram 6(2):73–76

    Article  Google Scholar 

  27. Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 192:55

    Article  Google Scholar 

  28. http://en.wikipedia.org/wiki/Vickers_hardness_test. Accessed Jan 2014

  29. Schober T, Carl A (1977) A revision of the Ta–H phase diagram. Scripta Met 11:397–400

    Article  Google Scholar 

  30. Ducastelle F, Caudron R, Costa P (1970) Etude Du Systeme Tantale–Hydrogene: diagramme D’Equilibre Structure Electronique. J Phys Chem Solids 31:1247–1256

    Article  Google Scholar 

  31. San-Martin A, Manchester FD (1991) The H–Ta (hydrogen–tantalum) system. J Phase Equilibria 12(3):332–343

    Article  Google Scholar 

  32. Langeberg JC, Mclellan RB (1973) Thermodynamics of B.C.C. solid solution of hydrogen in niobium, vanadium and tantalum. Acta Met 21:897–902

    Article  Google Scholar 

  33. Papathanassopoulos K, Scober T, Wenzl H (1984) Hydrogen diffusion in tantalum hydride. Solid State Commun 52(6):575–577

    Article  Google Scholar 

  34. Miranda L, Vargas P, Ceron H, Lagos M (1988) Hydrogen diffusion in tantalum. Phys Lett A 131(7,8):445–448

    Article  Google Scholar 

  35. Alfeld G, Volkl J (1978) Hydrogen in metals I: basic properties. Springer, Berlin

    Google Scholar 

  36. Fast J D (1965) Interaction of metals and Gases, vol.1. Thermodynamics and Phase Relations, Macmilllan Press/Phillips, London/Basingstoke

  37. Lewis FA (1990) Solubility of hydrogen in metals. Pure and Appl Chem 62(11):2091–2096

    Article  Google Scholar 

  38. Wagner C (1952) Thermodynamics of alloys. Addison–Wesley Press, Cambridge

    Google Scholar 

  39. Brodowsky H (1972) Non-ideal solution behaviour of hydrogen in metals. Ber Bunsenges Phys Chem 76:740–746

    Google Scholar 

  40. Pauling L (1945) The nature of the chemical bond. Cornell University Press, New York

    Google Scholar 

  41. Fukai Y (2005) The metal-hydrogen system, 2nd edn. Springer, Berlin

    Google Scholar 

  42. Makrides AC (1964) Absorption of hydrogen by silver–palladium alloys. J Phys Chem 68(8):2160–2169

    Article  Google Scholar 

  43. Ke X, Kramer JG, Lovvik OM (2004) The influence of electronic structure on hydrogen absorption in palladium alloys. J Phys Condens Matter 16:6267–6277

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Sanjay Kumar Rai from ISUD, RRCAT for his help in XRD measurements and Mr. Ashok Kumar Bhakar, RRCAT, Indore for his valuable help during XRD data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manju Taxak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taxak, M., Kumar, S., Sheelvantra, S. et al. Effect of iron on the solubility of hydrogen in tantalum. J Mater Sci 49, 8471–8477 (2014). https://doi.org/10.1007/s10853-014-8557-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8557-9

Keywords

Navigation