Advertisement

Journal of Materials Science

, Volume 49, Issue 24, pp 8471–8477 | Cite as

Effect of iron on the solubility of hydrogen in tantalum

  • Manju Taxak
  • Sanjay Kumar
  • Smita Sheelvantra
  • Nagaiyar Krishnamurthy
Original Paper

Abstract

Pressure-composition-isotherms for Ta–Fe–H systems have been investigated in the temperature range 673–873 K. Tantalum–iron alloys (Ta–xFe, x = 0, 1.6 and 3.2 atom  % Fe) were prepared by arc melting using high purity elements. The equilibrium solid solubility of hydrogen in the alloys decreases with an increase of iron content. Thermodynamic parameters of the solution process—the Gibb’s free energy, enthalpy, and entropy, for each of the solutions have been calculated. The relative partial molar enthalpy becomes less negative with increase in iron content, whereas the entropy values are nearly constant for these alloys. The solubility changes were explained on the basis of change in lattice strain energy of tantalum due to iron addition.

Keywords

Tantalum Vickers Hardness Hydrogen Embrittlement Hydrogen Solubility Group Versus Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are thankful to Dr. Sanjay Kumar Rai from ISUD, RRCAT for his help in XRD measurements and Mr. Ashok Kumar Bhakar, RRCAT, Indore for his valuable help during XRD data analysis.

References

  1. 1.
    Rothenberger KS, Howard BH, Killmeyer RP, Cugini AV, Enick RM, Bustamante F, Ciacoo MV, Morreale BD, Buxbaum RE (2003) Evaluation of tantalum-based materials for hydrogen separation at elevated temperatures and pressures. Membr Sci 218:19–37CrossRefGoogle Scholar
  2. 2.
    Kim SM, Chandra D, Pal NK, Dolan MD, Chien WM, Talekar A, Lamb J, Paglieri SN, Flanagan TB (2012) Hydrogen permeability and crystallization kinetics in amorphous Ni–Nb–Zr alloys. Int J Hydrog Energy 37:3904–3913CrossRefGoogle Scholar
  3. 3.
    Rothenberger KS, Howard BH, Cugini AV, Enick RM, Bustamante F, Ciacoo MV, Morreale BD, Buxbaum RE (2002) Hydrogen permeability of tantalum based membrane materials at elevated temperatures and pressures. Fuel Chem Div Prepr 47(2):814–815Google Scholar
  4. 4.
    Steward SA (1983) Review of hydrogen isotope permeability through metals, Lawrence Livermore National Laboratory Report UCRL–53441Google Scholar
  5. 5.
    Owen OV, Scott TE (1972) Relation between hydrogen embrittlement and the formation of hydrides in group V transition metals. Metall Trans 3:1715–1726CrossRefGoogle Scholar
  6. 6.
    Bishop CR, Stern M (1961) A method for prevention of hydrogen embrittlement of tantalum in aqueous media. Corrosion 17:379t–385tCrossRefGoogle Scholar
  7. 7.
    Kim KH, Shim JH, Lee BJ (2012) Effect of alloying elements (Al Co, Fe, Ni) on the solubility of hydrogen in vanadium: a thermodynamic calculation. Int J Hydrog Energy 37:7836–7847CrossRefGoogle Scholar
  8. 8.
    Amano M, Komaki M, Nishimura C (1991) Hydrogen permeation characteristics of Pd-coated V–Ni alloy membrane. J Less Common Met 172–174:727–731CrossRefGoogle Scholar
  9. 9.
    Matsumoto T, Sasaki Y, Hihara M (1975) Interaction between interstitial hydrogen and substitutional solute atoms in solid solution of niobium-base ternary alloys. J Phys Chem Solids 36:215–220CrossRefGoogle Scholar
  10. 10.
    Burch R, Francis NB (1976) Pressure-composition-temperature relationships in niobium alloy–hydrogen systems. J Less Common Met 49:371–384CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Ozaki T, Komaki M, Nishimura C (2002) Hydrogen permeation characteristics of vanadium–aluminum alloys. Scripta Mater 47:601–606CrossRefGoogle Scholar
  12. 12.
    Ozaki T, Zhang Y, Komaki M, Nishimura C (2003) Preparation of palladium-coated V and V–15Ni membranes for hydrogen purification by electroless plating technique. Int J Hydrog Energy 28:297–302CrossRefGoogle Scholar
  13. 13.
    Lynch JF, Reilly JJ, Millot F (1978) The absorption of hydrogen by binary vanadium–chromium alloys. J Phys Chem Solids 39:883–890CrossRefGoogle Scholar
  14. 14.
    Inoue A, Katsura M, Sano T (1977) The solubility of hydrogen in Nb–Mo alloy. J Less Common Met 55:9–23CrossRefGoogle Scholar
  15. 15.
    Nakajima H, Yoshioka M, Koiwa M (1987) Electromigration of hydrogen in vanadium and its alloys. Acta Met 35(11):2731–2736CrossRefGoogle Scholar
  16. 16.
    Eguchi T, Morozumi S (1974) Solubility of hydrogen in molybdenum and its alloys. Nippon Kinzoku Gakkai-shi 38(11):1019–1025Google Scholar
  17. 17.
    Kumar S, Taxak M, Krishnamurthy N, Suri AK, Tiwari GP (2012) Terminal solid solubility of hydrogen in V–Al solid solution. Int J Refract Met Hard Mater 31:76–81CrossRefGoogle Scholar
  18. 18.
    Fleury E, Suh JY, Kim D, Jeong CH, Park JH (2012) Hydrogen permeation characteristics of rolled V85Al10Co5 alloys. Curr Appl Phys 12:1131–1138CrossRefGoogle Scholar
  19. 19.
    Dolan MD, Song G, Liang D, Kellam ME, Chandra D, Lamb JH (2011) Hydrogen transport through V85Ni10M5 alloy membranes. J Membr Sci 373:14–19CrossRefGoogle Scholar
  20. 20.
    Yukawa H, Yamashita D, Ito S, Morinaga M, Yamaguchi S (2003) Compositional dependence of hydriding properties of vanadium alloys at low hydrogen pressures. J Alloys Compd 356–357:45–49CrossRefGoogle Scholar
  21. 21.
    Gypen LA, Brabers M, Deruyttere A (1984) Corrosion resistance of tantalum base alloys. Elimination of hydrogen embrittlement in tantalum by substitutional alloying. Mater Corros 35:37–46CrossRefGoogle Scholar
  22. 22.
    Swartzendruber LJ, Paul E (1986) The Fe–Ta (iron–tantalum) System. Bull Alloy Phase Diagr 7(3):254–259CrossRefGoogle Scholar
  23. 23.
    Semboshi S, Masahashi N, Hanada S (2003) Hydrogen-induced fragmentation in Ta–Ni alloy. J alloys Comp 359:236–243CrossRefGoogle Scholar
  24. 24.
    Taxak M, Kumar S, Kalekar B, Krishnamurthy N (2013) Effect of nickel addition on the solubility of hydrogen in tantalum. Int J Hydrog Energy 38:7561–7568CrossRefGoogle Scholar
  25. 25.
    Taxak M, Kumar S, Krishnamurthy N (2013) Thermodynamic parameters for the Ta–Cr–H solid solution from equilibrium P-C-T data. J Chem Thermodyn 67:48–54CrossRefGoogle Scholar
  26. 26.
    Taxak M, Kumar S, Krishnamurthy N, Suri AK, Tiwari GP (2012) Change in lattice parameter of tantalum due to dissolved hydrogen. Int J Process Appl Ceram 6(2):73–76CrossRefGoogle Scholar
  27. 27.
    Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 192:55CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Schober T, Carl A (1977) A revision of the Ta–H phase diagram. Scripta Met 11:397–400CrossRefGoogle Scholar
  30. 30.
    Ducastelle F, Caudron R, Costa P (1970) Etude Du Systeme Tantale–Hydrogene: diagramme D’Equilibre Structure Electronique. J Phys Chem Solids 31:1247–1256CrossRefGoogle Scholar
  31. 31.
    San-Martin A, Manchester FD (1991) The H–Ta (hydrogen–tantalum) system. J Phase Equilibria 12(3):332–343CrossRefGoogle Scholar
  32. 32.
    Langeberg JC, Mclellan RB (1973) Thermodynamics of B.C.C. solid solution of hydrogen in niobium, vanadium and tantalum. Acta Met 21:897–902CrossRefGoogle Scholar
  33. 33.
    Papathanassopoulos K, Scober T, Wenzl H (1984) Hydrogen diffusion in tantalum hydride. Solid State Commun 52(6):575–577CrossRefGoogle Scholar
  34. 34.
    Miranda L, Vargas P, Ceron H, Lagos M (1988) Hydrogen diffusion in tantalum. Phys Lett A 131(7,8):445–448CrossRefGoogle Scholar
  35. 35.
    Alfeld G, Volkl J (1978) Hydrogen in metals I: basic properties. Springer, BerlinGoogle Scholar
  36. 36.
    Fast J D (1965) Interaction of metals and Gases, vol.1. Thermodynamics and Phase Relations, Macmilllan Press/Phillips, London/BasingstokeGoogle Scholar
  37. 37.
    Lewis FA (1990) Solubility of hydrogen in metals. Pure and Appl Chem 62(11):2091–2096CrossRefGoogle Scholar
  38. 38.
    Wagner C (1952) Thermodynamics of alloys. Addison–Wesley Press, CambridgeGoogle Scholar
  39. 39.
    Brodowsky H (1972) Non-ideal solution behaviour of hydrogen in metals. Ber Bunsenges Phys Chem 76:740–746Google Scholar
  40. 40.
    Pauling L (1945) The nature of the chemical bond. Cornell University Press, New YorkGoogle Scholar
  41. 41.
    Fukai Y (2005) The metal-hydrogen system, 2nd edn. Springer, BerlinGoogle Scholar
  42. 42.
    Makrides AC (1964) Absorption of hydrogen by silver–palladium alloys. J Phys Chem 68(8):2160–2169CrossRefGoogle Scholar
  43. 43.
    Ke X, Kramer JG, Lovvik OM (2004) The influence of electronic structure on hydrogen absorption in palladium alloys. J Phys Condens Matter 16:6267–6277CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Manju Taxak
    • 1
  • Sanjay Kumar
    • 1
  • Smita Sheelvantra
    • 2
  • Nagaiyar Krishnamurthy
    • 1
  1. 1.Fusion Reactor Materials SectionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Analytical Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations