Journal of Materials Science

, Volume 49, Issue 22, pp 7797–7808 | Cite as

Enhancing the antifouling property of poly(vinylidene fluoride)/SiO2 hybrid membrane through TIPS method

  • Aiwen Qin
  • Xueliang Wu
  • Bomou Ma
  • Xinzhen Zhao
  • Chunju He
Original Paper


PVDF/SiO2 hybrid membranes with outstanding antifouling property were prepared from PVDF/glycerol triacetate system via thermally induced phase separation method, and characterized by scanning electron microscope, energy dispersive X-ray spectrometer analyses, differential scanning calorimeter, and wide angle X-ray diffraction. Their properties such as permeability, porosity, pore size distribution, and mechanical performance were also determined. The results show that SiO2 nanoparticles modified by 3-aminopropyltriethoxysilane can be uniformly dispersed in membranes due to improved compatibility between PVDF solution and nanoparticles. The addition of SiO2 particles to PVDF/glycerol triacetate mixture has a strong effect on crystallinity of the resulting hybrid membrane, which does not affect the type of PVDF crystal structure. Water flux recovery ratio is significantly increased from 11.7 % for pure PVDF membrane to 93.8 % for PVDF/SiO2 hybrid membrane with addition of 8 wt% modified SiO2. This remarkable promotion is related to the implantation of SiO2 nanoparticles into the inner surface of membrane, which effectively restrains the adsorption of bovine serum albumin on the pore walls and improves antifouling property of the final membranes. Additionally, pure water flux of the hybrid membrane is increased by 276 %, i.e., from 85 to 320 L m−2 h−1, tensile strength is increased by 26.5 %, and elongation at break is increased by 85.4 % compared with that of pure membrane.


SiO2 Content Hybrid Membrane Pure Water Flux Antifouling Property Thermally Induce Phase Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Grants from National High-tech Research and Development Projects (863,2012AA03A605), Program for New Century excellent talents (NCET-12-0827), the Natural Science Foundation of China (no. 51103019), the Program of Introducing Talents of Discipline to Universities (no. 111-2-04), and Chinese Universities Scientific Fund (DH-D-2013017).


  1. 1.
    Liu F, Hashim NA, Liu Y, Abed MRM, Li K (2011) Progress in the production and modification of PVDF membranes. J Membr Sci 375:1–27CrossRefGoogle Scholar
  2. 2.
    Cha BJ, Yang JM (2007) Preparation of poly(vinylidene fluoride) hollow fiber membranes for microfiltration using modified TIPS process. J Membr Sci 291:191–198CrossRefGoogle Scholar
  3. 3.
    Kim SS, Lloyd DR (1991) Microporous membrane formation via thermally-induced phase separation. III Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes. J Membr Sci 64:13–29CrossRefGoogle Scholar
  4. 4.
    Lloyd DR, Kim SS, Kinzer KE (1991) Microporous membrane formation via thermally-induced phase separation. II Liquid-liquid phase separation. J Membr Sci 64:1–11CrossRefGoogle Scholar
  5. 5.
    Francis L, Ghaffour N, Alsaadi AS, Nunes SP, Amy GL (2013) PVDF hollow fiber and nanofiber membranes for fresh water reclamation using membrane distillation. J Mater Sci 49:2045–2053CrossRefGoogle Scholar
  6. 6.
    Cao X, Ma J, Shi Xh, Ren Zj (2006) Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl Surf Sci 253:2003–2010CrossRefGoogle Scholar
  7. 7.
    Damodar RA, You SJ, Chou HH (2009) Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J Hazard Mater 172:1321–1328CrossRefGoogle Scholar
  8. 8.
    Shi F, Ma Y, Ma J, Wang P, Sun W (2012) Preparation and characterization of PVDF/TiO2 hybrid membranes with different dosage of nano-TiO2. J Membr Sci 389:522–531CrossRefGoogle Scholar
  9. 9.
    Soroko I, Livingston A (2009) Impact of TiO2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes. J Membr Sci 343:189–198CrossRefGoogle Scholar
  10. 10.
    Shi F, Ma Y, Ma J, Wang P, Sun W (2013) Preparation and characterization of PVDF/TiO2 hybrid membranes with ionic liquid modified nano-TiO2 particles. J Membr Sci 427:259–269CrossRefGoogle Scholar
  11. 11.
    Tang W, Zhu T, Zhou P, Zhao W, Wang Q, Feng G, Yuan H (2011) Poly(vinylidene fluoride)/poly(methyl methacrylate)/TiO2 blown films: preparation and surface study. J Mater Sci 46:6656–6663. doi: 10.1007/s10853-011-5618-1 CrossRefGoogle Scholar
  12. 12.
    Liu F, Abed MRM, Li K (2011) Preparation and characterization of poly(vinylidene fluoride) (PVDF) based ultrafiltration membranes using nano γ-Al2O3. J Membr Sci 366:97–103CrossRefGoogle Scholar
  13. 13.
    Yan L, Li Y, Xiang C, Xianda S (2006) Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. J Membr Sci 276:162–167CrossRefGoogle Scholar
  14. 14.
    Bottino A, Capannelli G, Comite A (2002) Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination 146:35–40CrossRefGoogle Scholar
  15. 15.
    Cui A, Liu Z, Xiao C, Zhang Y (2010) Effect of micro-sized SiO2-particle on the performance of PVDF blend membranes via TIPS. J Membr Sci 360:259–264CrossRefGoogle Scholar
  16. 16.
    Monticelli O, Waghmare P, Chincarini A (2009) On the preparation and application of novel PVDF-POSS systems. J Mater Sci 44:1764–1771. doi: 10.1007/s10853-009-3281-6 CrossRefGoogle Scholar
  17. 17.
    Liang S, Xiao K, Mo Y, Huang X (2012) A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J Membr Sci 394–395:184–192CrossRefGoogle Scholar
  18. 18.
    Yeow M, Liu Y, Li K (2005) Preparation of porous PVDF hollow fibre membrane via a phase inversion method using lithium perchlorate (LiClO4) as an additive. J Membr Sci 258:16–22CrossRefGoogle Scholar
  19. 19.
    Dong C, He G, Li H, Zhao R, Han Y, Deng Y (2012) Antifouling enhancement of poly(vinylidene fluoride) microfiltration membrane by adding Mg(OH)2 nanoparticles. J Membr Sci 387–388:40–47CrossRefGoogle Scholar
  20. 20.
    Cui ZY, Xu YY, Zhu LP, Wei XZ, Zhang CF, Zhu BK (2008) Preparation of PVDF/PMMA blend microporous membranes for lithium ion batteries via thermally induced phase separation process. Mater Lett 62:3809–3811CrossRefGoogle Scholar
  21. 21.
    Gu M, Zhang J, Wang X, Ma W (2006) Crystallization behavior of PVDF in PVDF-DMP system via thermally induced phase separation. J Appl Polym Sci 102:3714–3719CrossRefGoogle Scholar
  22. 22.
    Gu M, Zhang J, Wang X, Tao H, Ge L (2006) Formation of poly(vinylidene fluoride) (PVDF) membranes via thermally induced phase separation. Desalination 192:160–167CrossRefGoogle Scholar
  23. 23.
    Li D, Krantz WB, Greenberg AR, Sani RL (2006) Membrane formation via thermally induced phase separation (TIPS): model development and validation. J Membr Sci 279:50–60CrossRefGoogle Scholar
  24. 24.
    Marega C, Marigo A (2003) Influence of annealing and chain defects on the melting behaviour of poly(vinylidene fluoride). Eur Polym J 39:1713–1720CrossRefGoogle Scholar
  25. 25.
    Zou B, Hu Y, Cui F, Jiang L, Yu D, Huang H (2014) Effect of surface modification of low cost mesoporous SiO2 carriers on the properties of immobilized lipase. J Colloid Interf Sci 417:210–216CrossRefGoogle Scholar
  26. 26.
    Zhao H, Yu N, Ding Y, Tan R, Liu C, Yin D, Qiu H, Yin D (2010) Task-specific basic ionic liquid immobilized on mesoporous silicas: Efficient and reusable catalysts for Knoevenagel condensation in aqueous media. Micropor Mesopor Mat 136:10–17CrossRefGoogle Scholar
  27. 27.
    Hong J, He Y (2012) Effects of nano sized zinc oxide on the performance of PVDF microfiltration membranes. Desalination 302:71–79CrossRefGoogle Scholar
  28. 28.
    Gregorio R (2006) Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J Appl Polym Sci 100:3272–3279CrossRefGoogle Scholar
  29. 29.
    Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog Polym Sci 39:683–706CrossRefGoogle Scholar
  30. 30.
    Chinaglia DL, Gregorio R, Stefanello JC, Pisani Altafim RA, Wirges W, Wang F, Gerhard R (2009) Influence of the solvent evaporation rate on the crystalline phases of solution-cast poly(vinylidene fluoride) films. J Appl Polym Sci 116:785–791Google Scholar
  31. 31.
    Meng F, Liao B, Liang S, Yang F, Zhang H, Song L (2010) Morphological visualization, componential characterization and microbiological identification of membrane fouling in membrane bioreactors (MBRs). J Membr Sci 361:1–14CrossRefGoogle Scholar
  32. 32.
    Liu T, Chen Zl Yu, Wz You SJ (2011) Characterization of organic membrane foulants in a submerged membrane bioreactor with pre-ozonation using three-dimensional excitation-emission matrix fluorescence spectroscopy. Water Res 45:2111–2121CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Aiwen Qin
    • 1
    • 2
  • Xueliang Wu
    • 1
    • 2
  • Bomou Ma
    • 1
    • 2
  • Xinzhen Zhao
    • 1
    • 2
  • Chunju He
    • 1
    • 2
  1. 1.College of Materials Science and EngineeringDonghua UniversityShanghaiPeople’s Republic of China
  2. 2.The State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsDonghua UniversityShanghaiPeople’s Republic of China

Personalised recommendations