Skip to main content
Log in

Improvement in the thermoelectric properties of CaMnO3 perovskites by W doping

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Perovskite manganites CaMn1−y W y O3 (0 ≤ y ≤ 0.05) were synthesized using solid-state reaction technique. The influence of W doping on the structure, charge carrier transports and phonon scattering of CaMnO3 was investigated. Doping was found to increase the carrier concentration, leading to enhanced electrical conductivity and decreased Seebeck coefficient. In addition, it decreased the thermal conductivity of CaMnO3, which was believed to associate with decreased phonon mean path and doping-induced MnO6 octahedral distortion, as evidenced by the increased orthorhombicity. A twofold increase of figure of merit (ZT) of 0.15 at 973 K was observed in CaMn0.99W0.01O3, compared with the undoped CaMnO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Koumoto K, Funahashi R, Guilmeau E et al (2013) Thermoelectric Ceramics for Energy Harvesting. J Am Ceram Soc 96:1–23

    Article  Google Scholar 

  2. Ohtaki M, Koga H, Tokunaga T, Eguchi K, Arai H (1995) Electrical Transport Properties and High-Temperature Thermoelectric Performance of (Ca0.9M0.1) MnO3 (M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi). J Solid State Chem 120:105–111

    Article  Google Scholar 

  3. Zhang FP, Lu QM, Zhang X, Zhang JX (2011) First principle investigation of electronic structure of CaMnO3 thermoelectric compound oxide. J. Alloys Compd. 509:542–545

    Article  Google Scholar 

  4. Zhang FP, Zhang X, Lu QM, Zhang JX, Liu YQ (2011) Electronic structure and thermal properties of doped CaMnO3 systems. J. Alloys Compd. 509:4171–4175

    Article  Google Scholar 

  5. Zhang FP, Lu QM, Zhang X, Zhang JX (2013) Electrical transport properties of CaMnO3 thermoelectric compound: a theoretical study. J Phys Chem Solids 74:1859–1864

    Google Scholar 

  6. Koshibae W, Maekawa S (2001) Effects of Spin and Orbital Degeneracy on the Thermopower of Strongly Correlated Systems. Phys Rev Lett 87:236603

    Article  Google Scholar 

  7. Wang Y, Sui Y, Su W (2008) High temperature thermoelectric characteristics of Ca0.9R0.1MnO3 (R = La, Pr,…, Yb). J Appl Phys 104:093703

    Article  Google Scholar 

  8. Bocher L, Aguirre M, Logvinovich D et al (2008) CaMn1−xNbxO3 (x ≤ 0.08) Perovskite-Type Phases As Promising New High-Temperature n-Type Thermoelectric Materials. Inorg Chem 47:8077–8085

    Article  Google Scholar 

  9. Xu G, Funahashi R, Pu Q et al (2004) High-temperature transport properties of Nb and Ta substituted CaMnO3 system. Solid State Ionics 171:147–151

    Article  Google Scholar 

  10. Zhou Y, Matsubara I, Funahashi R, Xu G, Shikano M (2003) Influence of Mn-site doped with Ru on the high-temperature thermoelectric performance of CaMnO3−δ. Mater Res Bull 38:341–346

    Article  Google Scholar 

  11. Pi L, Hébert S, Martin C, Maignan A, Raveau B (2003) Comparison of CaMn1-xRux O3 and CaMn1-yMoyO3 perovskites. Phys. Rev. B 67:024430

    Article  Google Scholar 

  12. Martin C, Maignan A, Hervieu M, Raveau B, Hejtmanek J (2001) Electron doping in CaMnO3 induced by Mo for Mn substitution: An efficient route to orbital and charge ordering. Phys. Rev. B 63:100406

    Article  Google Scholar 

  13. Miclau M, Hejtmanek J, Retoux R et al (2007) Structural and Magnetic Transitions in CaMn1-xWxO3. Chem Mater 19:4243

    Article  Google Scholar 

  14. Pi L, Zhang S, Tong W, Tan S, Zhang Y (2006) Magnetic properties of “two electron” doped manganites: CaMn1−xWxO3. Solid State Commun 139:460–464

    Article  Google Scholar 

  15. Thiel P, Eilertsen J, Populoh S et al (2013) Influence of tungsten substitution and oxygen deficiency on the thermoelectric properties of CaMnO3−δ. J Appl Phys 114:243707

    Article  Google Scholar 

  16. Tong TW (1994) Thermal conductivity 22. CRC Press, Boca Raton

    Google Scholar 

  17. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  18. Leonidova EI, Leonidov IA, Patrakeev MV, Kozhevnikov VL (2011) Oxygen non-stoichiometry, high-temperature properties, and phase diagram of CaMnO3-δ. J Solid State Electrochem 15:1071–1075

    Article  Google Scholar 

  19. Gil de Muro I, Insausti M, Lezama L, Rojo T (2005) Morphological and magnetic study of CaMnO3−x oxides obtained from different routes. J Solid State Chem 178:928–936

    Article  Google Scholar 

  20. Matos I, Sério S, Lopes M, Nunes M, Jorge M (2011) Effect of the sintering temperature on the properties of nanocrystalline Ca1−xSmxMnO3(0 ≤ x ≤ 0.4) powders. J. Alloys Compd. 509:9617–9626

    Article  Google Scholar 

  21. Mott NF, Davis EA (2012) Electronic processes in non-crystalline materials. Oxford University Press, Wellington Square

    Google Scholar 

  22. Heikes RR, Ure RW (1961) Thermoelectricity: science and engineering. Interscience Publishers, New York

    Google Scholar 

  23. Schrade M, Kabir R, Li S, Norby T, Finstad TG (2014) High temperature transport properties of thermoelectric CaMnO3−δ — Indication of strongly interacting small polarons. J Appl Phys 115:103705

    Article  Google Scholar 

  24. Tian R, Donelson R, Ling CD et al (2013) Ga Substitution and Oxygen Diffusion Kinetics in Ca3Co4O9+δ-Based Thermoelectric Oxides. J Phys Chem C 117:13382–13387

    Article  Google Scholar 

  25. Kabir R, Zhang T, Donelson R et al (2014) Thermoelectric properties of Yb and Nb codoped CaMnO3. phys status solidi (a) 211:1200–1206

    Article  Google Scholar 

  26. Tsubota T, Ohtaki M, Eguchi K, Arai H (1997) Thermoelectric properties of Al-doped ZnO as a promising oxidematerial for high-temperature thermoelectric conversion. J Mater Chem 7:85–90

    Google Scholar 

  27. Schlichting KW, Padture NP, Klemens PG (2001) Thermal conductivity of dense and porous yttria-stabilized zirconia. J Mater Sci 36:3003–3010

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Australian Renewable Energy Agency (ARENA), Australian Research Council (ARC) and Baosteel for their financial support on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danyang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, R., Zhang, T., Wang, D. et al. Improvement in the thermoelectric properties of CaMnO3 perovskites by W doping. J Mater Sci 49, 7522–7528 (2014). https://doi.org/10.1007/s10853-014-8459-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8459-x

Keywords

Navigation