Journal of Materials Science

, Volume 49, Issue 20, pp 7317–7324 | Cite as

Transport, magnetic and structural properties of Mott insulator MnV2O4 at the boundary between localized and itinerant electron limit

  • Prashant Shahi
  • Saurabh Kumar
  • Neetika Sharma
  • Ripandeep Singh
  • P. U. Sastry
  • A. Das
  • A. Kumar
  • K. K. Shukla
  • A. K. Ghosh
  • A. K. Nigam
  • Sandip Chatterjee


The effect of Zn and Cr doping on the transport and magnetic properties of MnV2O4 have been investigated using resistivity, thermoelectric power (TEP), magnetization, neutron diffraction and X-ray diffraction techniques. It is observed, that with increase in Zn substitution the non-collinear orientation of Mn spins with the V spins decreases which effectively leads to the decrease of structural transition temperature more rapidly than Curie temperature. Investigations also show that with Zn doping both the Curie temperature (T C) and structural transition temperature (T S) decrease, while the gap between them increases rapidly. On the other hand, with Cr doping on the V site the T C remains almost constant but T S decreases rapidly. Moreover, with Zn doping both resistivity and TEP decrease, whereas with 10 % Cr doping the TEP decreases and a change of sign occurs indicating an increase in the band gap. This leads to the decrease of the mobility of the polaronic holes than the mobility of the electronic polarons at low temperature.


Mott Insulator Zero Field Cool Orbital Degeneracy Homopolar Bonding Polaronic Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



SC is grateful to the funding agencies DST (Grant No: SR/S2/CMP-26/2008) and CSIR (Grant No: 03(1142)/09/EMR-II) for financial support. PS is grateful to CSIR, India for providing research fellowship. Authors are also grateful to D. Budhikot for his help in magnetization measurement.


  1. 1.
    Kugel KI, Khomskii DI (1973) Crystal structure and magnetic properties of substances with orbital degeneracy. J Exp Theor Phys 37:725–730Google Scholar
  2. 2.
    Mamiya H, Onoda M, Furubayashi T, Tang J, Nakatani I (1997) Structural and magnetic studies on vanadium spinel MgV2O4. J Appl Phys 81:5289–5291CrossRefGoogle Scholar
  3. 3.
    Ueda Y, Fujiwara N (1997) Magnetic and structural transitions in (Li xZn 1x)V2O4 with the spinel structure. J Phy Soc Jpn 66:778–783CrossRefGoogle Scholar
  4. 4.
    Nishiguchi N, Onoda M (2002) A pseudotetramer in the geometrically frustrated spinel system CdV2O4. J Phys Condens Matter 14:L551–L557CrossRefGoogle Scholar
  5. 5.
    Tsunetsugu H, Motome Y (2003) Magnetic transition and orbital degrees of freedom in vanadium spinels. Phys Rev B 68:060405-1–060405-4CrossRefGoogle Scholar
  6. 6.
    Tchernyshyov O (2004) Structural, orbital, and magnetic order in vanadium spinels. Phys Rev Lett 93:157206-1–157206-4CrossRefGoogle Scholar
  7. 7.
    Khomskii DI, Mizokawa T (2005) Orbitally induced peierls state in spinels. Phys Rev Lett 94:156402-1–156402-4CrossRefGoogle Scholar
  8. 8.
    Brinkman WF, Rice TM (1970) Application of Gutzwiller’s variational method to the metal–insulator transition. Phys Rev B 2:4302–4304CrossRefGoogle Scholar
  9. 9.
    Blanco-Canosa S, Rivadulla F, Pardo V, Baldomir D, Zhou JS, García-Hernández M, López-Quintela MA, Rivas J, Goodenough JB (2007) Enhanced pressure dependence of magnetic exchange in AV2O4 spinels approaching the itinerant electron limit. Phys Rev Lett 99(18):187201CrossRefGoogle Scholar
  10. 10.
    Harrison WA (1980) Electronic structure and the properties of solid: the Physics of the chemical bond. W. H. Freeman & Co., San FranciscoGoogle Scholar
  11. 11.
    Bloch D (1966) The 103 law for the volume dependence of super exchange. J Phys Chem Solids 27:881–885CrossRefGoogle Scholar
  12. 12.
    Zhou JS, Goodenough JB (2002) Pressure-induced transition from localized electron toward band antiferromagnetism in LaMnO3. Phys Rev Lett 89:087201CrossRefGoogle Scholar
  13. 13.
    Goodenough JB, Longo JM, Kafalas JA (1968) Band antiferromagnetism and the new perovskite CaCrO3. Mater Res Bull 3:471–481CrossRefGoogle Scholar
  14. 14.
    Plumier R, Sougi M (1987) Observation of a first order transition in the ferrimagnetic spinel MnV2O4. Solid State Commun 64:53–55CrossRefGoogle Scholar
  15. 15.
    Adachi K, Suzuki T, Kato K, Osaka V, Takata M, Katsufuji T (2005) Magnetic-field switching of crystal structure in an orbital-spin-coupled system: MnV2O4. Phys Rev Lett 95:197202CrossRefGoogle Scholar
  16. 16.
    Suzuki T, Katsumura M, Taniguchi K, Arima T, Katsufuji T (2007) Orbital ordering and magnetic field effect in MnV2O4. Phys Rev Lett 98:127203CrossRefGoogle Scholar
  17. 17.
    Baek SH, Choi KY, Reyes AP, Kuhns PL, Curro NJ, Ramanchandran V, Dalal NS, Zhou HD, Wiebe CR (2008) Ac susceptibility and 51V NMR study of MnV2O4. J Phys Condens Matter 20:135218CrossRefGoogle Scholar
  18. 18.
    Chung JH, Kim JH, Lee SH, Sato TJ, Suzuki T, Katsumura M, Katsufuji T (2008) Magnetic excitations and orbital physics in the ferrimagnetic spinels MnB2O4 (B = Mn, V). Phys Rev B 77:054412CrossRefGoogle Scholar
  19. 19.
    Huang Y, Qu Z, Zhang Y (2011) The magnesium doping effect of the vanadate spinel MnV2O4. J Mag Mag Mater 323:975–979CrossRefGoogle Scholar
  20. 20.
    Garlea VO, Jin R, Mandrus D, Roessli B, Huang Q, Miller M, Schultz AJ, Nagler SE (2008) Magnetic and orbital ordering in the spinel MnV2O4. Phys Rev Lett 100:066404CrossRefGoogle Scholar
  21. 21.
    Buttgen N, Krimmel A, Loidl A, Klemm M, Horn S, Noakes DR, Schreier E, Kalvius GM (2002) Magnetic correlations in frustrated LiV2O4 and ZnV2O4. Physica B 703:312–313Google Scholar
  22. 22.
    Rechuis M, Krimmel A, Buttgen N, Loidl A, Prokofiev A (2003) Crystallographic and magnetic structure of ZnV2O4. Eur Phys J B 35:311–316CrossRefGoogle Scholar
  23. 23.
    Lee SH, Louca D, Ueda H, Park S, Sato TJ, Isobe M, Ueda Y, Rosenkranz S, Zschack P, Íñiguez J, Qiu Y, Osborn R (2004) Orbital and spin chains in ZnV2O4. Phys Rev Lett 93:156407CrossRefGoogle Scholar
  24. 24.
    Zhou HD, Lu J, Wiebe CR (2007) Spin ordering and orbital ordering transitions in MnV2O4. Phys Rev B 76:174403CrossRefGoogle Scholar
  25. 25.
    Goodenough JB (2001) Structure & bonding, Chaps. 1 and 2, vol 98. Springer, BerlinGoogle Scholar
  26. 26.
    Pardo V, Blanco-Canosa S, Rivadulla F, Khomskii DI, Baldomir D, Wu H, Rivas J (2008) Homopolar bond formation in ZnV2O4 close to a metal–insulator transition. Phys Rev Lett 101:256403CrossRefGoogle Scholar
  27. 27.
    Kismarahardja A, Brooks JS, Kiswandhi A, Matsubayashi K, Yamanaka R, Uwatoko Y, Whalen J, Siegrist T, Zhou HD (2011) Co[V2]O4: a spinel approaching the itinerant electron limit. Phys Rev Lett 106:056602CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Prashant Shahi
    • 1
  • Saurabh Kumar
    • 1
  • Neetika Sharma
    • 2
  • Ripandeep Singh
    • 2
  • P. U. Sastry
    • 2
  • A. Das
    • 2
  • A. Kumar
    • 1
  • K. K. Shukla
    • 1
  • A. K. Ghosh
    • 3
  • A. K. Nigam
    • 4
  • Sandip Chatterjee
    • 1
  1. 1.Department of PhysicsIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
  2. 2.Solid State Physics DivisionBhabha Atomic Research CenterMumbaiIndia
  3. 3.Department of PhysicsBanaras Hindu UniversityVaranasiIndia
  4. 4.Department of CMP & MSTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations