Skip to main content
Log in

Transport, magnetic and structural properties of Mott insulator MnV2O4 at the boundary between localized and itinerant electron limit

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of Zn and Cr doping on the transport and magnetic properties of MnV2O4 have been investigated using resistivity, thermoelectric power (TEP), magnetization, neutron diffraction and X-ray diffraction techniques. It is observed, that with increase in Zn substitution the non-collinear orientation of Mn spins with the V spins decreases which effectively leads to the decrease of structural transition temperature more rapidly than Curie temperature. Investigations also show that with Zn doping both the Curie temperature (T C) and structural transition temperature (T S) decrease, while the gap between them increases rapidly. On the other hand, with Cr doping on the V site the T C remains almost constant but T S decreases rapidly. Moreover, with Zn doping both resistivity and TEP decrease, whereas with 10 % Cr doping the TEP decreases and a change of sign occurs indicating an increase in the band gap. This leads to the decrease of the mobility of the polaronic holes than the mobility of the electronic polarons at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kugel KI, Khomskii DI (1973) Crystal structure and magnetic properties of substances with orbital degeneracy. J Exp Theor Phys 37:725–730

    Google Scholar 

  2. Mamiya H, Onoda M, Furubayashi T, Tang J, Nakatani I (1997) Structural and magnetic studies on vanadium spinel MgV2O4. J Appl Phys 81:5289–5291

    Article  Google Scholar 

  3. Ueda Y, Fujiwara N (1997) Magnetic and structural transitions in (Li x Zn 1x )V 2 O 4 with the spinel structure. J Phy Soc Jpn 66:778–783

    Article  Google Scholar 

  4. Nishiguchi N, Onoda M (2002) A pseudotetramer in the geometrically frustrated spinel system CdV2O4. J Phys Condens Matter 14:L551–L557

    Article  Google Scholar 

  5. Tsunetsugu H, Motome Y (2003) Magnetic transition and orbital degrees of freedom in vanadium spinels. Phys Rev B 68:060405-1–060405-4

    Article  Google Scholar 

  6. Tchernyshyov O (2004) Structural, orbital, and magnetic order in vanadium spinels. Phys Rev Lett 93:157206-1–157206-4

    Article  Google Scholar 

  7. Khomskii DI, Mizokawa T (2005) Orbitally induced peierls state in spinels. Phys Rev Lett 94:156402-1–156402-4

    Article  Google Scholar 

  8. Brinkman WF, Rice TM (1970) Application of Gutzwiller’s variational method to the metal–insulator transition. Phys Rev B 2:4302–4304

    Article  Google Scholar 

  9. Blanco-Canosa S, Rivadulla F, Pardo V, Baldomir D, Zhou JS, García-Hernández M, López-Quintela MA, Rivas J, Goodenough JB (2007) Enhanced pressure dependence of magnetic exchange in AV2O4 spinels approaching the itinerant electron limit. Phys Rev Lett 99(18):187201

    Article  Google Scholar 

  10. Harrison WA (1980) Electronic structure and the properties of solid: the Physics of the chemical bond. W. H. Freeman & Co., San Francisco

    Google Scholar 

  11. Bloch D (1966) The 103 law for the volume dependence of super exchange. J Phys Chem Solids 27:881–885

    Article  Google Scholar 

  12. Zhou JS, Goodenough JB (2002) Pressure-induced transition from localized electron toward band antiferromagnetism in LaMnO3. Phys Rev Lett 89:087201

    Article  Google Scholar 

  13. Goodenough JB, Longo JM, Kafalas JA (1968) Band antiferromagnetism and the new perovskite CaCrO3. Mater Res Bull 3:471–481

    Article  Google Scholar 

  14. Plumier R, Sougi M (1987) Observation of a first order transition in the ferrimagnetic spinel MnV2O4. Solid State Commun 64:53–55

    Article  Google Scholar 

  15. Adachi K, Suzuki T, Kato K, Osaka V, Takata M, Katsufuji T (2005) Magnetic-field switching of crystal structure in an orbital-spin-coupled system: MnV2O4. Phys Rev Lett 95:197202

    Article  Google Scholar 

  16. Suzuki T, Katsumura M, Taniguchi K, Arima T, Katsufuji T (2007) Orbital ordering and magnetic field effect in MnV2O4. Phys Rev Lett 98:127203

    Article  Google Scholar 

  17. Baek SH, Choi KY, Reyes AP, Kuhns PL, Curro NJ, Ramanchandran V, Dalal NS, Zhou HD, Wiebe CR (2008) Ac susceptibility and 51V NMR study of MnV2O4. J Phys Condens Matter 20:135218

    Article  Google Scholar 

  18. Chung JH, Kim JH, Lee SH, Sato TJ, Suzuki T, Katsumura M, Katsufuji T (2008) Magnetic excitations and orbital physics in the ferrimagnetic spinels MnB2O4 (B = Mn, V). Phys Rev B 77:054412

    Article  Google Scholar 

  19. Huang Y, Qu Z, Zhang Y (2011) The magnesium doping effect of the vanadate spinel MnV2O4. J Mag Mag Mater 323:975–979

    Article  Google Scholar 

  20. Garlea VO, Jin R, Mandrus D, Roessli B, Huang Q, Miller M, Schultz AJ, Nagler SE (2008) Magnetic and orbital ordering in the spinel MnV2O4. Phys Rev Lett 100:066404

    Article  Google Scholar 

  21. Buttgen N, Krimmel A, Loidl A, Klemm M, Horn S, Noakes DR, Schreier E, Kalvius GM (2002) Magnetic correlations in frustrated LiV2O4 and ZnV2O4. Physica B 703:312–313

    Google Scholar 

  22. Rechuis M, Krimmel A, Buttgen N, Loidl A, Prokofiev A (2003) Crystallographic and magnetic structure of ZnV2O4. Eur Phys J B 35:311–316

    Article  Google Scholar 

  23. Lee SH, Louca D, Ueda H, Park S, Sato TJ, Isobe M, Ueda Y, Rosenkranz S, Zschack P, Íñiguez J, Qiu Y, Osborn R (2004) Orbital and spin chains in ZnV2O4. Phys Rev Lett 93:156407

    Article  Google Scholar 

  24. Zhou HD, Lu J, Wiebe CR (2007) Spin ordering and orbital ordering transitions in MnV2O4. Phys Rev B 76:174403

    Article  Google Scholar 

  25. Goodenough JB (2001) Structure & bonding, Chaps. 1 and 2, vol 98. Springer, Berlin

    Google Scholar 

  26. Pardo V, Blanco-Canosa S, Rivadulla F, Khomskii DI, Baldomir D, Wu H, Rivas J (2008) Homopolar bond formation in ZnV2O4 close to a metal–insulator transition. Phys Rev Lett 101:256403

    Article  Google Scholar 

  27. Kismarahardja A, Brooks JS, Kiswandhi A, Matsubayashi K, Yamanaka R, Uwatoko Y, Whalen J, Siegrist T, Zhou HD (2011) Co[V2]O4: a spinel approaching the itinerant electron limit. Phys Rev Lett 106:056602

    Article  Google Scholar 

Download references

Acknowledgements

SC is grateful to the funding agencies DST (Grant No: SR/S2/CMP-26/2008) and CSIR (Grant No: 03(1142)/09/EMR-II) for financial support. PS is grateful to CSIR, India for providing research fellowship. Authors are also grateful to D. Budhikot for his help in magnetization measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahi, P., Kumar, S., Sharma, N. et al. Transport, magnetic and structural properties of Mott insulator MnV2O4 at the boundary between localized and itinerant electron limit. J Mater Sci 49, 7317–7324 (2014). https://doi.org/10.1007/s10853-014-8444-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8444-4

Keywords

Navigation