Journal of Materials Science

, Volume 50, Issue 1, pp 21–27 | Cite as

Synthesis and characterization of TiO2/WO3 composite nanotubes for photocatalytic applications

  • Xiaofei Qu
  • Dandan Xie
  • Lei Gao
  • Lixin Cao
  • Fanglin Du


TiO2/WO3 composite nanotubes were synthesized in an anodic aluminum oxide (AAO) template by a sol–gel method. The prepared nanotubes were characterized by transmission electron microscopy, scanning electron microscopy, powder X-ray diffraction, and Brunauer–Emmett–Teller surface area. Using the nanotubes embedded in the AAO templates as catalysts, photocatalytic degradation of methyl orange aqueous solution was carried out under UV light irradiation. The results showed that the TiO2/WO3 composite nanotubes with the thickness about 50 nm could be successfully synthesized by this method. TiO2 showed anatase phase and WO3 displayed monoclinic phase. The composite nanotubes (TiO2/WO3) exhibited higher photocatalytic activity than the pure nanotubes (WO3 or TiO2). The possible reason for improving the photocatalytic activity was also discussed.


TiO2 Photocatalytic Activity Methyl Orange Anodic Aluminum Oxide Anodic Aluminum Oxide Template 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by Natural Science Foundation of China (Grant No. 51272115) and The Scientific Research Encouragement Foundation for Outstanding Young and Middle Aged Scientists of Shandong Province, China (Grant No. BS2013CL025).


  1. 1.
    Joshi UA, Darwent JR, Yiu HHP, Rosseinsky MJ (2011) The effect of platinum on the performance of WO3 nanocrystal photocatalysts for the oxidation of methyl orange and iso-propanol. J Chem Technol Biotechnol 86:1018–1023CrossRefGoogle Scholar
  2. 2.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmetal applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  3. 3.
    Chatterjiee D, Dasgupta S (2005) Visible light induced photo-catalytic degradation of organic pollutants. J Photochem Photobiol C 6:186–205CrossRefGoogle Scholar
  4. 4.
    Sun JH, Wang YK, Sun RX, Dong SY (2009) Photodegradation of azo dye Congo red from aqueous solution by the WO3–TiO2/activated carbon (AC) photocatalyst under the UV irradiation. Mater Chem Phys 115:303–308CrossRefGoogle Scholar
  5. 5.
    Georgieva J, Valova E, Armyanov S, Philippidis N, Poulios I, Sotiropoulos S (2012) Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: a short review with emphasis to TiO2–WO3 photoanodes. J Hazard Mater 211–212:30–46CrossRefGoogle Scholar
  6. 6.
    Wang J, Lin ZQ (2010) Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering. Chem Mater 22:579–584CrossRefGoogle Scholar
  7. 7.
    Le TT, Akhtar MS, Park DM, Lee JC, Yang OB (2012) Water splitting on rhodamine-B dye sensitized Co-doped TiO2 catalyst under visible light. Appl Catal B 111–112:397–401CrossRefGoogle Scholar
  8. 8.
    Mohamed RM, Baeissa ES (2013) Mordenite encapsulated with Pt–TiO2: characterization and applications for photocatalytic degradation of direct blue dye. J Alloys Compd 558:68–72CrossRefGoogle Scholar
  9. 9.
    Bumajdad A, Madkour M, Abdel-Moneam Y, El-Kemary M (2014) Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: the effect of size similarity of the deposited Au with that of TiO2 pores. J Mater Sci 49:1743–1754. doi: 10.1007/s10853-013-7816-0 CrossRefGoogle Scholar
  10. 10.
    Abdelaal MY, Mohamed RM (2013) Novel Pd/TiO2 nanocomposite prepared by modified sol–gel method for photocatalytic degradation of methylene blue dye under visible light irradiation. J Alloys Compd 576:201–207CrossRefGoogle Scholar
  11. 11.
    Chai SN, Zhao GH, Li PQ, Lei YZ, Zhang YN, Li DM (2011) Novel sieve-like SnO2/TiO2 nanotubes with integrated photoelectrocatalysis: fabrication and application for efficient toxicity elimination of nitrophenol wastewater. J Phys Chem C 115:18261–18269CrossRefGoogle Scholar
  12. 12.
    Konyar M, Yatmaz HC, Öztürk K (2012) Sintering temperature effect on photocatalytic efficiencies of ZnO/TiO2 composite plates. Appl Surf Sci 258:7440–7447CrossRefGoogle Scholar
  13. 13.
    Fujii H, Inata K, Ohtak M, Eguchi K, Aria H (2001) Synthesis of TiO2/CdS nanocomposite via TiO2 coating on CdS nanoparticles by compartmentalized hydrolysis of Ti alkoxide. J Mater Sci 36:527–532CrossRefGoogle Scholar
  14. 14.
    Onsuratoom S, Puangpetch T, Chavadej S (2011) Comparative investigation of hydrogen production over Ag-, Ni-, and Cu-loaded mesoporous-assembled TiO2–ZrO2 mixed oxide nanocrystal photocatalysts. Chem Eng J 173:667–675CrossRefGoogle Scholar
  15. 15.
    Mohapatra SK, Banerjee S, Misral M (2008) Synthesis of Fe2O3/TiO2 nanorod–nanotube arrays by filling TiO2 nanotubes with Fe. Nanotechnology 19:315601CrossRefGoogle Scholar
  16. 16.
    Iliev V, Tomova D, Rakovsky S, Eliyas A, Puma GL (2010) Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation. J Mol Catal A 327:51–57CrossRefGoogle Scholar
  17. 17.
    Cheng LF, Zhang XT, Liu B, Wang HZ, Li YC, Huang YB, Du ZL (2005) Template synthesis and characterization of WO3/TiO2 composite nanotubes. Nanotechnology 16:1341–1345CrossRefGoogle Scholar
  18. 18.
    Cetinkaya T, Neuwirthová L, Kutláková KM, Tomášek V, Akbulut H (2013) Synthesis of nanostructured TiO2/SiO2 as an effective photocatalyst for degradation of acid orange. Appl Surf Sci 279:384–390CrossRefGoogle Scholar
  19. 19.
    Wager JF (2008) Transparent electronics: Schottky barrier and heterojunction considerations. Thin Solid Films 516:1755–1764CrossRefGoogle Scholar
  20. 20.
    Sáa J, Fernández-Garcíab M, Andersona JA (2008) Photoformed electron transfer from TiO2 to metal clusters. Catal Commun 9:1991–1995CrossRefGoogle Scholar
  21. 21.
    Nah YC, Ghicov A, Kim D, Berger S, Schmuki P (2008) TiO2–WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties. J Am Chem Soc 130:16154–16155CrossRefGoogle Scholar
  22. 22.
    Srinivasan A, Miyauchi M (2012) Chemically stable WO3 based thin-film for visible-light induced oxidation and superhydrophilicity. J Phys Chem C 116:15421–15426CrossRefGoogle Scholar
  23. 23.
    Smith W, Zhao YP (2008) Enhanced photocatalytic activity by aligned WO3/TiO2 two-layer nanorod arrays. J Phys Chem C 112:19635–19641CrossRefGoogle Scholar
  24. 24.
    Monllor-Satokca D, Borja L, Rods A, Gomez R, Salvador P (2006) Photo-electrochemical behavior of nanostructured WO3 thin-film electrodes: the oxidation of formic acid. Chem Phys Chem 7:2540–2551Google Scholar
  25. 25.
    Lv KZ, Li J, Qing XX, Li WZ, Chen QY (2011) Synthesis and photo-degradation application of WO3/TiO2 hollow spheres. J Hazard Mater 189:329–335CrossRefGoogle Scholar
  26. 26.
    Zhu Y, Su XT, Yang C, Gao XQ, Xiao F, Wang JD (2012) Synthesis of TiO2–WO3 nanocomposites as highly sensitive benzene sensors and high efficiency adsorbents. J Mater Chem 22:13914–13917CrossRefGoogle Scholar
  27. 27.
    Lee DS, Han SD, Lee SM, Huh JS, Lee DD (2000) The TiO2-adding effects in WO3-based NO2 sensors prepared by coprecipitation and precipitation method. Sens Actuators B 65:331–335CrossRefGoogle Scholar
  28. 28.
    Lin C, Song Y, Cao LX, Chen SW (2013) Effective photocatalysis of functional nanocomposites based on carbon and TiO2 nanoparticles. Nanoscale 5:4986–4992CrossRefGoogle Scholar
  29. 29.
    Puddu V, Mokaya R, Puma GL (2007) Novel one step hydrothermal synthesis of TiO2/WO3 nanocomposites with enhanced photocatalytic activity. Chem Commun 45:4749–4751CrossRefGoogle Scholar
  30. 30.
    Ramos-Delgado NA, Hinojosa-Reyes L, Guzman-Mar IL, Gracia-Pinilla MA, Hernández-Ramírez A (2013) Synthesis by sol–gel of WO3/TiO2 for solar photocatalytic degradation of malathion pesticide. Catal Today 209:35–40CrossRefGoogle Scholar
  31. 31.
    Yang HM, Shi RR, Zhang K, Hu YH, Tang AD, Li XW (2005) Synthesis of WO3/TiO2 nanocomposites via sol–gel method. J Alloy Compd 398:200–202CrossRefGoogle Scholar
  32. 32.
    Zayim EO (2005) Optical and electrochromic properties of sol–gel made anti-reflective WO3–TiO2 films. Sol Energy Mater Sol Cells 87:695–703CrossRefGoogle Scholar
  33. 33.
    Hsu CS, Lin CK, Chan CC, Chang CC, Tsay CY (2006) Preparation and characterization of nanocrystalline porous TiO2/WO3 composite thin films. Thin Solid Films 494:228–233CrossRefGoogle Scholar
  34. 34.
    Pan JH, Lee WI (2006) Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties. Chem Mater 18:847–853CrossRefGoogle Scholar
  35. 35.
    Qian QH, Zhou XF, Hu YY, Liu C, Feng X, Lu XH (2007) Preparation of smooth potassium hexatitanate nanofilms by sol–gel method. J Mater Sci 42:8222–8229. doi: 10.1007/s10853-007-1695-6 CrossRefGoogle Scholar
  36. 36.
    Mao YB, Wong SS (2006) Size-and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures. J Am Chem Soc 128:8217–8226CrossRefGoogle Scholar
  37. 37.
    Ramana CV, Utsunomiya S, Ewing RC (2006) Structural stability and phase transitions in WO3 thin films. J Phys Chem B 110:10430–10435CrossRefGoogle Scholar
  38. 38.
    Yuan Y, Zhao YC, Li HL, Li Y, Gao X, Zheng CG, Zhang JY (2012) Electrospun metal oxide–TiO2 nanofibers for elemental mercury removal from flue gas. J Hazard Mater 227–228:427–435CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringQingdao University of Science and TechnologyQingdaoChina
  2. 2.Institute of Materials Science and EngineeringOcean University of ChinaQingdaoChina

Personalised recommendations