Journal of Materials Science

, Volume 49, Issue 20, pp 7221–7230 | Cite as

Electromagnetic and microwave absorbing properties of magnetite nanoparticles decorated carbon nanotubes/polyaniline multiphase heterostructures

  • Deqing Zhang
  • Junye Cheng
  • Xiuying Yang
  • Bin Zhao
  • Maosheng Cao
Original Paper


Magnetite nanoparticles decorated CNTs/PANI multiphase heterostructures were prepared by polymerization of aniline monomer and an additional process of the coprecipitation of Fe2+ and Fe3+. Scanning electron microscopy and transmission electron microscopy observation indicated that the monodispersed magnetite nanoparticles were uniformly decorated on the surface of CNTs/PANI. The formation of magnetite nanoparticles on CNTs/PANI was mainly through a preferentially position-selective precipitation process. More interestingly, a portion of Fe3O4 nanoparticles was found to form core–shell structures with PANI. The effects of different additional amounts of NH2Fe(SO4)2·6H2O reactant on the magnetic properties and microwave absorbing performances of CNTs/PANI/Fe3O4 heterostructures were investigated. The CNTs/PANI/Fe3O4 multiphase heterostructures were proved to be superparamagnetic. The microwave absorption measurement showed that the CNTs/PANI/Fe3O4 samples under 1.5 g of NH2Fe(SO4)2·6H2O condition exhibited much more effective absorption performance. These results suggested the novel CNTs/PANI/Fe3O4 multiphase heterostructures with PANI as the second phase may be potential candidate for microwave absorption systems.


PANI Dielectric Loss Fe3O4 Nanoparticles Microwave Absorption Magnetite Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Science Foundation of P. R. China (Grant 50972014, 51072024 and 51132002).


  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  2. 2.
    Baughman RH, Zakhidov AA, deHeer WA (2002) Carbon nanotubes-the route toward applications. Science 297:787–792CrossRefGoogle Scholar
  3. 3.
    Shan Y, Chen KZ, Yu XG, Gao L (2010) Preparation and characterization of biocompatible magnetic carbon nanotubes. Appl Surf Sci 257:362–366CrossRefGoogle Scholar
  4. 4.
    Zhang L, Ni QQ, Natsuki T, Fu YQ (2009) Carbon nanotubes/magnetite hybrids prepared by a facile synthesis process and their magnetic properties. Appl Surf Sci 255:8676–8681CrossRefGoogle Scholar
  5. 5.
    Yu LM, Li B, Sheng LM (2013) The microwave absorbing properties of SmCo attached single wall carbon nanotube/epoxy composites. J Alloy Compd 575:123–127CrossRefGoogle Scholar
  6. 6.
    Melvin GJH, Ni QQ, Suzuki Y, Natsuki T (2014) Microwave-absorbing properties of silver nanoparticle/carbon nanotube hybrid nanocomposites. J Mater Sci 49:5199–5207. doi: 10.1007/s10853-014-8229-9 CrossRefGoogle Scholar
  7. 7.
    Zhang C, Gao L, Chen YM (2011) Fabrication of ceramic oxidecoated SWNT composites by sol–gel process with a polymer glue. J Nanopart Res 13:3731–3740CrossRefGoogle Scholar
  8. 8.
    Huang X, Lu M, Zhang X (2012) Carbon microtube/Fe3O4 nanocomposite with improved wave-absorbing performance. Scr Mater 67:613–616CrossRefGoogle Scholar
  9. 9.
    Huo J, Wang L, Yu H (2009) Polymeric nanocomposites for electromagnetic wave absorption. J Mater Sci 44:3917–3927. doi: 10.1007/s10853-009-3561-1 CrossRefGoogle Scholar
  10. 10.
    Wu Q, Wang ZQ, Xue G (2007) Controlling the structure and morphology of monodisperse polystyrene/polyaniline composite particles. Adv Funct Mater 17:1784–1789CrossRefGoogle Scholar
  11. 11.
    Zhang LJ, Long YZ, Chen ZJ, Wan MX (2004) The effect of hydrogen bonding on self-assembled polyaniline nanostructures. Adv Funct Mater 14:693–698CrossRefGoogle Scholar
  12. 12.
    Aussawasathien D, Dong JH, Dai L (2005) Electrospun polymer nanofiber sensors. Synth Met 154:37–40CrossRefGoogle Scholar
  13. 13.
    Lefrant S, Baibarac M, Baltog I, Mevellec JY, Godon C, Chauvet O (2005) Functionalization of single-walled carbon nanotubes with conducting polymers evidenced by Raman and FTIR spectroscopy. Diam Relat Mater 14:867–872CrossRefGoogle Scholar
  14. 14.
    Zengin H, Zhou W, Jin J, Cserw R, Smith DW Jr, Echegoyen L, Carroll DL, Foulger SH, Ballato J (2002) Carbon nanotube doped polyaniline. Adv Mater 14:1480–1483CrossRefGoogle Scholar
  15. 15.
    Barraza HJ, Pompeo F, O’Rear EA, Resasco DE (2002) SWNT-filled thermoplastic and elastomeric composites prepared by miniemulsion polymerization. Nano Lett 2:797–802CrossRefGoogle Scholar
  16. 16.
    Zhu ZZ, Wang Z, Li HL (2008) Functional multi-walled carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation. Appl Surf Sci 254:2934–2940CrossRefGoogle Scholar
  17. 17.
    Zhang Z, Wan MX (2003) Nanostructures of polyaniline composites containing nano-magnet. Synth Met 132:205–212CrossRefGoogle Scholar
  18. 18.
    Lu XF, Yu YH, Chen L, Mao HP, Zhang WJ, Wei Y (2004) Preparation and characterization of polyaniline microwires containing CdS nanoparticles. Chem Commun 13:1522–1523CrossRefGoogle Scholar
  19. 19.
    Suber L, Imperatori P, Ausanio G, Fabbri F, Hofmeister H (2005) Synthesis, morphology, and magnetic characterization of iron oxide nanowires and nanotubes. J Phys Chem B 109:7103–7109CrossRefGoogle Scholar
  20. 20.
    Zhang AB, Tang M, Cao XF, Lu ZB, Shen YT (2014) The effect of polyethylenimine on the microwave absorbing properties of a hybrid microwave absorber of Fe3O4/MWNTs. J Mater Sci 49:4629–4635. doi: 10.1007/s10853-014-8165-8 CrossRefGoogle Scholar
  21. 21.
    Deng Z, Yenilmez E, Leu J, Hoffman JE, Straver EW, Dai H, Moler KA (2004) Metalcoated carbon nanotube tips for magnetic force microscopy. Appl Phys Lett 85:6263–6265CrossRefGoogle Scholar
  22. 22.
    Zhang ZM, Wan MX, Wei Y (2005) Electromagnetic functionalized polyaniline nanostructures. Nanotechnol 16:2827CrossRefGoogle Scholar
  23. 23.
    Utsumi S, Urita K, Kanoh H, Yudasaka M, Suenaga K, Iijima S, Kaneka K (2006) Preparing a magnetically responsive single-wall carbon nanohorn colloid by anchoring magnetite nanoparticles. J Phys Chem B 110:7165–7170CrossRefGoogle Scholar
  24. 24.
    Xu P, Cui DX, Pan BF, Gao F, He R, Li Q, Huang T, Bao CC, Yang H (2008) A facile strategy for covalent binding of nanoparticles onto carbon nanotubes. Appl Surf Sci 254:5236–5240CrossRefGoogle Scholar
  25. 25.
    Stoffelbach F, Aqil A, Jerome C, Jerome R, Detrembleur C (2005) An easy and economically viable route for the decoration of carbon nanotubes by magnetite nanoparticles, and their orientation in a magnetic field. Chem Commun 36:4532–4533CrossRefGoogle Scholar
  26. 26.
    Gass J, Poddar P, Almand J, Srinath S, Srikanth H (2006) Superparamagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions. Adv Funct Mater 16:71–75CrossRefGoogle Scholar
  27. 27.
    Amrithesh M, Aravind S, Jayalekshmi S, Jayasree RSJ (2008) Enhanced luminescence observed in polyaniline-polymethylmethacrylate composites. J Alloys Compd 449:176–179CrossRefGoogle Scholar
  28. 28.
    Deng MG, Yang BC, Hu YD (2005) Polyaniline deposition to enhance the specific capacitance of carbon nanotubes for supercapacitors. J Mater Sci 40:5021–5023. doi: 10.1007/s10853-005-1623-6 CrossRefGoogle Scholar
  29. 29.
    Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Chemistry of single-walled carbon nanotubes. Chem Phys Lett 35:1105–1113Google Scholar
  30. 30.
    Jia BP, Gao L (2007) Fabrication of “tadpole”-like magnetite/multiwalled carbon nanotube heterojunctions and their self-assembly under external magnetic field. J Phys Chem B 111:5337–5343CrossRefGoogle Scholar
  31. 31.
    Wan JQ, Cai W, Feng JT, Meng XX, Liu EZ (2007) In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols. J Mater Chem 17:1188–1192CrossRefGoogle Scholar
  32. 32.
    Deng JG, He CL, Peng YX, Wang JH, Long XP, Li P, Chan ASC (2003) Magnetic and conductive Fe3O4-polyaniline nanoparticles with core-shell structure. Synth Met 139:295–301CrossRefGoogle Scholar
  33. 33.
    Chiu WS, Radiman S, Abdullah MH, Khiew PS, Huang NM, Abd-Shukor R (2007) One pot synthesis of monodisperse Fe3O4 nanocrystals by pyrolysis reaction of organometallic compound. Mater Chem Phys 106:231–235CrossRefGoogle Scholar
  34. 34.
    Cattaruzza F, Fiorani D, Flamini A, Imperatori P, Scavia G, Suber L, Testa AM, Mezzi A, Ausanio G, Plunkett WR (2005) Magnetite nanoparticles anchored to crystalline silicon surfaces. Chem Mater 17:3311–3316CrossRefGoogle Scholar
  35. 35.
    Zhun L, Wang J, Xie DH, Chen G (2008) Polyaniline-coated Fe3O4 nanoparticle-carbon-nanotube composite and its application in electrochemical biosensing. Small 4:462–466CrossRefGoogle Scholar
  36. 36.
    Jiang LQ, Gao L (2003) Carbon nanotubes-magnetite nanocomposites from solvothermal processes: formation, characterization, and enhanced electrical properties. Chem Mater 15:2848–2853CrossRefGoogle Scholar
  37. 37.
    Shi XL, Cao MS, Yuan J, Zhao QL, Kang YQ, Fang XY, Chen YJ (2008) Nonlinear resonant and high dielectric loss behavior of CdS/α-Fe2O3 heterostructure nanocomposites. Appl Phys Lett 93:183118CrossRefGoogle Scholar
  38. 38.
    Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ (2007) Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19:852–857CrossRefGoogle Scholar
  39. 39.
    Kaiser AB, Skakalova V (2011) Electronic conduction in polymers, carbon nanotubes and graphen. Chem Soc Rev 40:3786–3801CrossRefGoogle Scholar
  40. 40.
    Che RC, Peng LM, Duan XF, Chen Q, Liang XL (2004) Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 16:401–405CrossRefGoogle Scholar
  41. 41.
    Wen FS, Zhang F, Liu ZY (2011) Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J Phys Chem C 115:14025–14030CrossRefGoogle Scholar
  42. 42.
    Chen LY, Duan YP, Liu LD, Guo JB, Liu SH (2010) Influence of SiO2 fillers on microwave absorption properties of carbonyl iron/carbon black double-layer coatings. Mater Des 32:570–574CrossRefGoogle Scholar
  43. 43.
    Zhu CL, Zhang ML, Qiao YJ (2010) Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J Phys Chem C 114:16229–16234CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Key Laboratory of Fine Chemicals of College of Heilongjiang ProvinceQiqihar UniversityQiqiharChina
  2. 2.School of Energy and Power EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
  3. 3.School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
  4. 4.School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations