Skip to main content
Log in

Electromagnetic and microwave absorbing properties of magnetite nanoparticles decorated carbon nanotubes/polyaniline multiphase heterostructures

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Magnetite nanoparticles decorated CNTs/PANI multiphase heterostructures were prepared by polymerization of aniline monomer and an additional process of the coprecipitation of Fe2+ and Fe3+. Scanning electron microscopy and transmission electron microscopy observation indicated that the monodispersed magnetite nanoparticles were uniformly decorated on the surface of CNTs/PANI. The formation of magnetite nanoparticles on CNTs/PANI was mainly through a preferentially position-selective precipitation process. More interestingly, a portion of Fe3O4 nanoparticles was found to form core–shell structures with PANI. The effects of different additional amounts of NH2Fe(SO4)2·6H2O reactant on the magnetic properties and microwave absorbing performances of CNTs/PANI/Fe3O4 heterostructures were investigated. The CNTs/PANI/Fe3O4 multiphase heterostructures were proved to be superparamagnetic. The microwave absorption measurement showed that the CNTs/PANI/Fe3O4 samples under 1.5 g of NH2Fe(SO4)2·6H2O condition exhibited much more effective absorption performance. These results suggested the novel CNTs/PANI/Fe3O4 multiphase heterostructures with PANI as the second phase may be potential candidate for microwave absorption systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  2. Baughman RH, Zakhidov AA, deHeer WA (2002) Carbon nanotubes-the route toward applications. Science 297:787–792

    Article  Google Scholar 

  3. Shan Y, Chen KZ, Yu XG, Gao L (2010) Preparation and characterization of biocompatible magnetic carbon nanotubes. Appl Surf Sci 257:362–366

    Article  Google Scholar 

  4. Zhang L, Ni QQ, Natsuki T, Fu YQ (2009) Carbon nanotubes/magnetite hybrids prepared by a facile synthesis process and their magnetic properties. Appl Surf Sci 255:8676–8681

    Article  Google Scholar 

  5. Yu LM, Li B, Sheng LM (2013) The microwave absorbing properties of SmCo attached single wall carbon nanotube/epoxy composites. J Alloy Compd 575:123–127

    Article  Google Scholar 

  6. Melvin GJH, Ni QQ, Suzuki Y, Natsuki T (2014) Microwave-absorbing properties of silver nanoparticle/carbon nanotube hybrid nanocomposites. J Mater Sci 49:5199–5207. doi:10.1007/s10853-014-8229-9

    Article  Google Scholar 

  7. Zhang C, Gao L, Chen YM (2011) Fabrication of ceramic oxidecoated SWNT composites by sol–gel process with a polymer glue. J Nanopart Res 13:3731–3740

    Article  Google Scholar 

  8. Huang X, Lu M, Zhang X (2012) Carbon microtube/Fe3O4 nanocomposite with improved wave-absorbing performance. Scr Mater 67:613–616

    Article  Google Scholar 

  9. Huo J, Wang L, Yu H (2009) Polymeric nanocomposites for electromagnetic wave absorption. J Mater Sci 44:3917–3927. doi:10.1007/s10853-009-3561-1

    Article  Google Scholar 

  10. Wu Q, Wang ZQ, Xue G (2007) Controlling the structure and morphology of monodisperse polystyrene/polyaniline composite particles. Adv Funct Mater 17:1784–1789

    Article  Google Scholar 

  11. Zhang LJ, Long YZ, Chen ZJ, Wan MX (2004) The effect of hydrogen bonding on self-assembled polyaniline nanostructures. Adv Funct Mater 14:693–698

    Article  Google Scholar 

  12. Aussawasathien D, Dong JH, Dai L (2005) Electrospun polymer nanofiber sensors. Synth Met 154:37–40

    Article  Google Scholar 

  13. Lefrant S, Baibarac M, Baltog I, Mevellec JY, Godon C, Chauvet O (2005) Functionalization of single-walled carbon nanotubes with conducting polymers evidenced by Raman and FTIR spectroscopy. Diam Relat Mater 14:867–872

    Article  Google Scholar 

  14. Zengin H, Zhou W, Jin J, Cserw R, Smith DW Jr, Echegoyen L, Carroll DL, Foulger SH, Ballato J (2002) Carbon nanotube doped polyaniline. Adv Mater 14:1480–1483

    Article  Google Scholar 

  15. Barraza HJ, Pompeo F, O’Rear EA, Resasco DE (2002) SWNT-filled thermoplastic and elastomeric composites prepared by miniemulsion polymerization. Nano Lett 2:797–802

    Article  Google Scholar 

  16. Zhu ZZ, Wang Z, Li HL (2008) Functional multi-walled carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation. Appl Surf Sci 254:2934–2940

    Article  Google Scholar 

  17. Zhang Z, Wan MX (2003) Nanostructures of polyaniline composites containing nano-magnet. Synth Met 132:205–212

    Article  Google Scholar 

  18. Lu XF, Yu YH, Chen L, Mao HP, Zhang WJ, Wei Y (2004) Preparation and characterization of polyaniline microwires containing CdS nanoparticles. Chem Commun 13:1522–1523

    Article  Google Scholar 

  19. Suber L, Imperatori P, Ausanio G, Fabbri F, Hofmeister H (2005) Synthesis, morphology, and magnetic characterization of iron oxide nanowires and nanotubes. J Phys Chem B 109:7103–7109

    Article  Google Scholar 

  20. Zhang AB, Tang M, Cao XF, Lu ZB, Shen YT (2014) The effect of polyethylenimine on the microwave absorbing properties of a hybrid microwave absorber of Fe 3 O4/MWNTs. J Mater Sci 49:4629–4635. doi:10.1007/s10853-014-8165-8

    Article  Google Scholar 

  21. Deng Z, Yenilmez E, Leu J, Hoffman JE, Straver EW, Dai H, Moler KA (2004) Metalcoated carbon nanotube tips for magnetic force microscopy. Appl Phys Lett 85:6263–6265

    Article  Google Scholar 

  22. Zhang ZM, Wan MX, Wei Y (2005) Electromagnetic functionalized polyaniline nanostructures. Nanotechnol 16:2827

    Article  Google Scholar 

  23. Utsumi S, Urita K, Kanoh H, Yudasaka M, Suenaga K, Iijima S, Kaneka K (2006) Preparing a magnetically responsive single-wall carbon nanohorn colloid by anchoring magnetite nanoparticles. J Phys Chem B 110:7165–7170

    Article  Google Scholar 

  24. Xu P, Cui DX, Pan BF, Gao F, He R, Li Q, Huang T, Bao CC, Yang H (2008) A facile strategy for covalent binding of nanoparticles onto carbon nanotubes. Appl Surf Sci 254:5236–5240

    Article  Google Scholar 

  25. Stoffelbach F, Aqil A, Jerome C, Jerome R, Detrembleur C (2005) An easy and economically viable route for the decoration of carbon nanotubes by magnetite nanoparticles, and their orientation in a magnetic field. Chem Commun 36:4532–4533

    Article  Google Scholar 

  26. Gass J, Poddar P, Almand J, Srinath S, Srikanth H (2006) Superparamagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions. Adv Funct Mater 16:71–75

    Article  Google Scholar 

  27. Amrithesh M, Aravind S, Jayalekshmi S, Jayasree RSJ (2008) Enhanced luminescence observed in polyaniline-polymethylmethacrylate composites. J Alloys Compd 449:176–179

    Article  Google Scholar 

  28. Deng MG, Yang BC, Hu YD (2005) Polyaniline deposition to enhance the specific capacitance of carbon nanotubes for supercapacitors. J Mater Sci 40:5021–5023. doi:10.1007/s10853-005-1623-6

    Article  Google Scholar 

  29. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Chemistry of single-walled carbon nanotubes. Chem Phys Lett 35:1105–1113

    Google Scholar 

  30. Jia BP, Gao L (2007) Fabrication of “tadpole”-like magnetite/multiwalled carbon nanotube heterojunctions and their self-assembly under external magnetic field. J Phys Chem B 111:5337–5343

    Article  Google Scholar 

  31. Wan JQ, Cai W, Feng JT, Meng XX, Liu EZ (2007) In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols. J Mater Chem 17:1188–1192

    Article  Google Scholar 

  32. Deng JG, He CL, Peng YX, Wang JH, Long XP, Li P, Chan ASC (2003) Magnetic and conductive Fe3O4-polyaniline nanoparticles with core-shell structure. Synth Met 139:295–301

    Article  Google Scholar 

  33. Chiu WS, Radiman S, Abdullah MH, Khiew PS, Huang NM, Abd-Shukor R (2007) One pot synthesis of monodisperse Fe3O4 nanocrystals by pyrolysis reaction of organometallic compound. Mater Chem Phys 106:231–235

    Article  Google Scholar 

  34. Cattaruzza F, Fiorani D, Flamini A, Imperatori P, Scavia G, Suber L, Testa AM, Mezzi A, Ausanio G, Plunkett WR (2005) Magnetite nanoparticles anchored to crystalline silicon surfaces. Chem Mater 17:3311–3316

    Article  Google Scholar 

  35. Zhun L, Wang J, Xie DH, Chen G (2008) Polyaniline-coated Fe3O4 nanoparticle-carbon-nanotube composite and its application in electrochemical biosensing. Small 4:462–466

    Article  Google Scholar 

  36. Jiang LQ, Gao L (2003) Carbon nanotubes-magnetite nanocomposites from solvothermal processes: formation, characterization, and enhanced electrical properties. Chem Mater 15:2848–2853

    Article  Google Scholar 

  37. Shi XL, Cao MS, Yuan J, Zhao QL, Kang YQ, Fang XY, Chen YJ (2008) Nonlinear resonant and high dielectric loss behavior of CdS/α-Fe2O3 heterostructure nanocomposites. Appl Phys Lett 93:183118

    Article  Google Scholar 

  38. Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ (2007) Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19:852–857

    Article  Google Scholar 

  39. Kaiser AB, Skakalova V (2011) Electronic conduction in polymers, carbon nanotubes and graphen. Chem Soc Rev 40:3786–3801

    Article  Google Scholar 

  40. Che RC, Peng LM, Duan XF, Chen Q, Liang XL (2004) Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 16:401–405

    Article  Google Scholar 

  41. Wen FS, Zhang F, Liu ZY (2011) Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J Phys Chem C 115:14025–14030

    Article  Google Scholar 

  42. Chen LY, Duan YP, Liu LD, Guo JB, Liu SH (2010) Influence of SiO2 fillers on microwave absorption properties of carbonyl iron/carbon black double-layer coatings. Mater Des 32:570–574

    Article  Google Scholar 

  43. Zhu CL, Zhang ML, Qiao YJ (2010) Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J Phys Chem C 114:16229–16234

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of P. R. China (Grant 50972014, 51072024 and 51132002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zhao or Maosheng Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Cheng, J., Yang, X. et al. Electromagnetic and microwave absorbing properties of magnetite nanoparticles decorated carbon nanotubes/polyaniline multiphase heterostructures. J Mater Sci 49, 7221–7230 (2014). https://doi.org/10.1007/s10853-014-8429-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8429-3

Keywords

Navigation