Skip to main content
Log in

Experimental investigation and thermodynamic description of the Mg–Y–Zr system

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The Mg–Y–Zr system was studied via experimental investigation and thermodynamic modeling. Four diffusion couples and four key alloys of the Mg–Y–Zr system at 500 °C were prepared. The phase relations of the Mg–Y–Zr system were investigated by means of X-ray diffraction, scanning electron microscopy, and electron probe microanalysis. No ternary compound was found at 500 °C. The solubility of (αZr) in the Mg–Y intermetallics, i.e., Mg24Y5, Mg2Y and MgY, was determined to be negligible. The differential scanning calorimetry measurement was performed on the Mg–Y–Zr alloys to obtain the phase transition temperature. The present thermodynamic calculations of the Mg–Y–Zr system matched well with the experimental data. The presently established Mg–Y–Zr phase diagram can offer a better understanding of the recent processing technique of creep-resistant magnesium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mordike BL, Ebert T (2001) Magnesium: properties–applications-potential. Mater Sci Eng A 302:37–45

    Article  Google Scholar 

  2. Nie JF (2003) Preface to viewpoint set on: phase transformations and deformation in magnesium alloys. Scr Mater 48:981–984

    Article  Google Scholar 

  3. Nie JF, Muddle BC (2000) Characterisation of strengthening precipitate phases in a Mg–Y–Nd alloy. Acta Mater 48:1691–1703

    Article  Google Scholar 

  4. Apps PJ, Karimzadeh H, King JF, Lorimer GW (2003) Precipitation reactions in magnesium–rare earth alloys containing yttrium, gadolinium or dysprosium. Scr Mater 48:1023–1028

    Article  Google Scholar 

  5. Anthony I, Kamado S, Kojima Y (2001) Aging characteristics and high temperature tensile properties of Mg–Gd–Y–Zr alloys. Mater Trans 42:1206–1211

    Article  Google Scholar 

  6. Anthony I, Kamado S, Kojima Y (2001) Creep properties of Mg–Gd–Y–Zr alloys. Mater Trans 42:1212–1218

    Article  Google Scholar 

  7. Nie JF, Muddle BC (1999) Precipitation in magnesium alloy WE54 during isothermal ageing at 250 °C. Scr Mater 40:1089–1094

    Article  Google Scholar 

  8. Nie JF (2012) Precipitation and hardening in magnesium alloys. Metall Mater Trans A 43A:3891–3939

    Article  Google Scholar 

  9. Riontino G, Massazza M, Lussana D, Mengucci P, Barucca G, Ferragut R (2008) A novel thermal treatment on a Mg–4.2Y–2.3Nd–0.6Zr (WE43) alloy. Mater Sci Eng A 494:445–448

    Article  Google Scholar 

  10. Mengucci P, Barucca G, Riontino G et al (2008) Structure evolution of a WE43 Mg alloy submitted to different thermal treatments. Mater Sci Eng A 479:37–44

    Article  Google Scholar 

  11. Zheng KY, Dong J, Zeng XQ, Ding WJ (2008) Effect of pre-deformation on aging characteristics and mechanical properties of a Mg–Gd–Nd–Zr alloy. Mater Sci Eng A 491:103–109

    Article  Google Scholar 

  12. Barucca G, Ferragut R, Fiori F et al (2011) Formation and evolution of the hardening precipitates in a Mg–Y–Nd alloy. Acta Mater 59:4151–4158

    Article  Google Scholar 

  13. Agnew SR, Mulay RP, Polesak FJ, Calhoun CA, Bhattacharyya JJ, Clausen B (2013) In situ neutron diffraction and poly plasticity modeling of a Mg–Y–Nd–Zr alloy: effects of precipitation on individual deformation mechanisms. Acta Mater 61:3769–3780

    Article  Google Scholar 

  14. Liu H, Gao Y, Liu JZ, Zhu YM, Wang Y, Nie JF (2013) A simulation study of the shape of beta’ precipitates in Mg–Y and Mg–Gd alloys. Acta Mater 61:453–466

    Article  Google Scholar 

  15. Berche A, Benigni P, Rogez J, Record MC (2014) Thremodynamic investigations in the solid state of the lanthanum–magnesium–zinc system. Intermetallics 45:46–52

    Article  Google Scholar 

  16. Gröbner J, Harmpl M, Schmid-Fetzer R et al (2012) Phase analysis of Mg–La–Nd and Mg–La–Ce alloys. Intermetallics 28:92–101

    Article  Google Scholar 

  17. Zhang C, Luo AA, Peng LM, Stone DS, Chang YA (2011) Thermodynamic modeling and experimental investigation of the magnesium–neodymium–zinc alloys. Intermetallics 19:1720–1726

    Article  Google Scholar 

  18. Cheng KM, Zhou H, Hu B et al (2014) Experimental investigation and thermodynamic modeling of the Nd–Zr and the Mg–Nd–Zr systems. Metall Mater Trans A 45:2708–2718

    Article  Google Scholar 

  19. Kim YD, Kang NH, Jo IG, Kim KH, Kim IB (2008) Aging behavior of Mg–Y–Zr and Mg–Nd–Zr cast alloys. J Mater Sci Technol 24:80–84

    Article  Google Scholar 

  20. Drits ME, Padezhnova EM, Guzey LS (1977) Investigation of the phase equilibria and properties of Mg–Y–Zr magnesium alloys. Russ Metall 3:188–191

    Google Scholar 

  21. He CY, Du Y, Chen HL, Ouyang H (2008) Measurement of the isothermal sections at 700 and 427 °C in the Al–Mg–Ni system. Int J Mater Res 99:907–911

    Article  Google Scholar 

  22. Ran Q, Lukas HL, Effenberg G, Petzow G (1988) Thermodynamic optimization of the Mg–Y system. CALPHAD 12:375–381

    Article  Google Scholar 

  23. Fabrichnaya OB, Lukas HL, Effenberg G, Aldinger F (2003) Thermodynamic optimization in the Mg–Y system. Intermetallics 11:1183–1188

    Article  Google Scholar 

  24. Shakhshir SA, Medraj M (2006) Computational thermodynamic model for the Mg–Al–Y system. J Phase Equilibria Diffus 27:231–244

    Article  Google Scholar 

  25. Guo C, Du Z, Li C (2007) A thermodynamic description of the Gd–Mg–Y system. Calphad 31:75–88

    Article  Google Scholar 

  26. Meng FG, Wang J, Liu HS, Liu LB, Jin ZP (2007) Experimental investigation and thermodynamic calculation of phase relations in the Mg–Nd–Y ternary system. Mater Sci Eng A 454–455:266–273

    Article  Google Scholar 

  27. Hämäläinen M, Zeng K (1998) Thermodynamic evaluation of the Mg–Zr system. CALPHAD 22:375–380

    Article  Google Scholar 

  28. Arroyave R, Shin D, Liu ZK (2005) Modification of the thermodynamic model for the Mg–Zr system. CALPHAD 29:230–238

    Article  Google Scholar 

  29. Flandorfer H, Gröbner J, Stamou A (1997) Experimental investigation and thermodynamic calculation of the ternary system Mn–Y–Zr. Z Metallkd 88:529–538

    Google Scholar 

  30. He HX, Liu HS (2009) Determination of the isothermal section of the Cu–Zr–Y ternary system at 978 K. J Alloy Compd 475:245–251

    Article  Google Scholar 

  31. Sundman B, Jansson B, Andersson JO (1985) The thermo-calc databank system. CALPHAD 9:153–190

    Article  Google Scholar 

  32. Friedrich HE, Mordike BL (2006) Magnesium technology. Springer, New York

    Google Scholar 

Download references

Acknowledgements

The financial support from the National Basic Research Program of China (Grant No. 2011CB610401), the National Natural Science Foundation of China (Grant Nos. 51371199 and 51101172), and Thermo-Calc Software AB under the Mg Alloy Database Project is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, K., Zhou, H., Du, Y. et al. Experimental investigation and thermodynamic description of the Mg–Y–Zr system. J Mater Sci 49, 7124–7132 (2014). https://doi.org/10.1007/s10853-014-8420-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8420-z

Keywords

Navigation