Advertisement

Journal of Materials Science

, Volume 49, Issue 20, pp 7124–7132 | Cite as

Experimental investigation and thermodynamic description of the Mg–Y–Zr system

  • Kaiming Cheng
  • Hua Zhou
  • Yong Du
  • Shuhong Liu
  • Honghui Xu
Article

Abstract

The Mg–Y–Zr system was studied via experimental investigation and thermodynamic modeling. Four diffusion couples and four key alloys of the Mg–Y–Zr system at 500 °C were prepared. The phase relations of the Mg–Y–Zr system were investigated by means of X-ray diffraction, scanning electron microscopy, and electron probe microanalysis. No ternary compound was found at 500 °C. The solubility of (αZr) in the Mg–Y intermetallics, i.e., Mg24Y5, Mg2Y and MgY, was determined to be negligible. The differential scanning calorimetry measurement was performed on the Mg–Y–Zr alloys to obtain the phase transition temperature. The present thermodynamic calculations of the Mg–Y–Zr system matched well with the experimental data. The presently established Mg–Y–Zr phase diagram can offer a better understanding of the recent processing technique of creep-resistant magnesium alloys.

Keywords

Magnesium Alloy Isothermal Section Phase Transition Temperature Diffusion Couple Ternary Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The financial support from the National Basic Research Program of China (Grant No. 2011CB610401), the National Natural Science Foundation of China (Grant Nos. 51371199 and 51101172), and Thermo-Calc Software AB under the Mg Alloy Database Project is greatly acknowledged.

References

  1. 1.
    Mordike BL, Ebert T (2001) Magnesium: properties–applications-potential. Mater Sci Eng A 302:37–45CrossRefGoogle Scholar
  2. 2.
    Nie JF (2003) Preface to viewpoint set on: phase transformations and deformation in magnesium alloys. Scr Mater 48:981–984CrossRefGoogle Scholar
  3. 3.
    Nie JF, Muddle BC (2000) Characterisation of strengthening precipitate phases in a Mg–Y–Nd alloy. Acta Mater 48:1691–1703CrossRefGoogle Scholar
  4. 4.
    Apps PJ, Karimzadeh H, King JF, Lorimer GW (2003) Precipitation reactions in magnesium–rare earth alloys containing yttrium, gadolinium or dysprosium. Scr Mater 48:1023–1028CrossRefGoogle Scholar
  5. 5.
    Anthony I, Kamado S, Kojima Y (2001) Aging characteristics and high temperature tensile properties of Mg–Gd–Y–Zr alloys. Mater Trans 42:1206–1211CrossRefGoogle Scholar
  6. 6.
    Anthony I, Kamado S, Kojima Y (2001) Creep properties of Mg–Gd–Y–Zr alloys. Mater Trans 42:1212–1218CrossRefGoogle Scholar
  7. 7.
    Nie JF, Muddle BC (1999) Precipitation in magnesium alloy WE54 during isothermal ageing at 250 °C. Scr Mater 40:1089–1094CrossRefGoogle Scholar
  8. 8.
    Nie JF (2012) Precipitation and hardening in magnesium alloys. Metall Mater Trans A 43A:3891–3939CrossRefGoogle Scholar
  9. 9.
    Riontino G, Massazza M, Lussana D, Mengucci P, Barucca G, Ferragut R (2008) A novel thermal treatment on a Mg–4.2Y–2.3Nd–0.6Zr (WE43) alloy. Mater Sci Eng A 494:445–448CrossRefGoogle Scholar
  10. 10.
    Mengucci P, Barucca G, Riontino G et al (2008) Structure evolution of a WE43 Mg alloy submitted to different thermal treatments. Mater Sci Eng A 479:37–44CrossRefGoogle Scholar
  11. 11.
    Zheng KY, Dong J, Zeng XQ, Ding WJ (2008) Effect of pre-deformation on aging characteristics and mechanical properties of a Mg–Gd–Nd–Zr alloy. Mater Sci Eng A 491:103–109CrossRefGoogle Scholar
  12. 12.
    Barucca G, Ferragut R, Fiori F et al (2011) Formation and evolution of the hardening precipitates in a Mg–Y–Nd alloy. Acta Mater 59:4151–4158CrossRefGoogle Scholar
  13. 13.
    Agnew SR, Mulay RP, Polesak FJ, Calhoun CA, Bhattacharyya JJ, Clausen B (2013) In situ neutron diffraction and poly plasticity modeling of a Mg–Y–Nd–Zr alloy: effects of precipitation on individual deformation mechanisms. Acta Mater 61:3769–3780CrossRefGoogle Scholar
  14. 14.
    Liu H, Gao Y, Liu JZ, Zhu YM, Wang Y, Nie JF (2013) A simulation study of the shape of beta’ precipitates in Mg–Y and Mg–Gd alloys. Acta Mater 61:453–466CrossRefGoogle Scholar
  15. 15.
    Berche A, Benigni P, Rogez J, Record MC (2014) Thremodynamic investigations in the solid state of the lanthanum–magnesium–zinc system. Intermetallics 45:46–52CrossRefGoogle Scholar
  16. 16.
    Gröbner J, Harmpl M, Schmid-Fetzer R et al (2012) Phase analysis of Mg–La–Nd and Mg–La–Ce alloys. Intermetallics 28:92–101CrossRefGoogle Scholar
  17. 17.
    Zhang C, Luo AA, Peng LM, Stone DS, Chang YA (2011) Thermodynamic modeling and experimental investigation of the magnesium–neodymium–zinc alloys. Intermetallics 19:1720–1726CrossRefGoogle Scholar
  18. 18.
    Cheng KM, Zhou H, Hu B et al (2014) Experimental investigation and thermodynamic modeling of the Nd–Zr and the Mg–Nd–Zr systems. Metall Mater Trans A 45:2708–2718CrossRefGoogle Scholar
  19. 19.
    Kim YD, Kang NH, Jo IG, Kim KH, Kim IB (2008) Aging behavior of Mg–Y–Zr and Mg–Nd–Zr cast alloys. J Mater Sci Technol 24:80–84CrossRefGoogle Scholar
  20. 20.
    Drits ME, Padezhnova EM, Guzey LS (1977) Investigation of the phase equilibria and properties of Mg–Y–Zr magnesium alloys. Russ Metall 3:188–191Google Scholar
  21. 21.
    He CY, Du Y, Chen HL, Ouyang H (2008) Measurement of the isothermal sections at 700 and 427 °C in the Al–Mg–Ni system. Int J Mater Res 99:907–911CrossRefGoogle Scholar
  22. 22.
    Ran Q, Lukas HL, Effenberg G, Petzow G (1988) Thermodynamic optimization of the Mg–Y system. CALPHAD 12:375–381CrossRefGoogle Scholar
  23. 23.
    Fabrichnaya OB, Lukas HL, Effenberg G, Aldinger F (2003) Thermodynamic optimization in the Mg–Y system. Intermetallics 11:1183–1188CrossRefGoogle Scholar
  24. 24.
    Shakhshir SA, Medraj M (2006) Computational thermodynamic model for the Mg–Al–Y system. J Phase Equilibria Diffus 27:231–244CrossRefGoogle Scholar
  25. 25.
    Guo C, Du Z, Li C (2007) A thermodynamic description of the Gd–Mg–Y system. Calphad 31:75–88CrossRefGoogle Scholar
  26. 26.
    Meng FG, Wang J, Liu HS, Liu LB, Jin ZP (2007) Experimental investigation and thermodynamic calculation of phase relations in the Mg–Nd–Y ternary system. Mater Sci Eng A 454–455:266–273CrossRefGoogle Scholar
  27. 27.
    Hämäläinen M, Zeng K (1998) Thermodynamic evaluation of the Mg–Zr system. CALPHAD 22:375–380CrossRefGoogle Scholar
  28. 28.
    Arroyave R, Shin D, Liu ZK (2005) Modification of the thermodynamic model for the Mg–Zr system. CALPHAD 29:230–238CrossRefGoogle Scholar
  29. 29.
    Flandorfer H, Gröbner J, Stamou A (1997) Experimental investigation and thermodynamic calculation of the ternary system Mn–Y–Zr. Z Metallkd 88:529–538Google Scholar
  30. 30.
    He HX, Liu HS (2009) Determination of the isothermal section of the Cu–Zr–Y ternary system at 978 K. J Alloy Compd 475:245–251CrossRefGoogle Scholar
  31. 31.
    Sundman B, Jansson B, Andersson JO (1985) The thermo-calc databank system. CALPHAD 9:153–190CrossRefGoogle Scholar
  32. 32.
    Friedrich HE, Mordike BL (2006) Magnesium technology. Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kaiming Cheng
    • 1
  • Hua Zhou
    • 1
  • Yong Du
    • 1
  • Shuhong Liu
    • 1
  • Honghui Xu
    • 1
  1. 1.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations