Journal of Materials Science

, Volume 49, Issue 20, pp 7014–7022 | Cite as

Prussian blue modified Fe3O4 nanoparticles for Cs detoxification



Fe3O4 nanoparticles were surface modified with Prussian blue (PB) and the nanoparticles were used for the removal of cesium (Cs) ion. The attachment of PB with the Fe3O4 and their morphology were explained based on the studies by transmission electron microscope and BET measurements. The Cs ion adsorption studies have shown that the Cs removal efficiency reached maximum within 120 min. The adsorption kinetics studies using Lagergren pseudo-first-order kinetic model suggest the values of the amount of metal ion adsorbed at equilibrium (q e) and adsorption rate constant (k 1) as 22 mg/g and 0.015 min−1, respectively. The capture efficiency of the prepared nanoparticles was studied by varying the flow channel diameter, applied magnetic field, and the fluid flow velocity. The study suggests that PB-Fe3O4 nanoparticles could be used for the detoxification of Cs where the flow velocity is in the range of few tens of cm/s.


Fe3O4 Fe3O4 Nanoparticles Prussian Blue Select Area Electron Diffraction Pattern Capture Efficiency 



The authors acknowledge the Department of Science and Technology (DST), Govt. of India for financial assistance through (SR/FTP/ETA-11/2008), the FIST program (SR/FST/PSI-117/2007), and the nanomission project (SR/NM/NS-27/2008). The authors acknowledge Dr. S. Velmathi, Department of Chemistry, National Institute of Technology for the BET measurement.

Supplementary material

10853_2014_8406_MOESM1_ESM.tif (2 mb)
Supplementary material 1 (TIFF 2040 kb)


  1. 1.
    Avery SV (1996) Fate of caesium in the environment: distribution between the abi-otic and biotic components of aquatic and terrestrial ecosystems. J Environ Radioact 30:139–171CrossRefGoogle Scholar
  2. 2.
    Faustino PJ, Yang Y, Progar JJ, Brownell CR, Sadrieh N, May JC, Leutzinger E et al (2008) Quantitative determination of cesium binding to ferrichexacyanoferrate: Prussian blue. J Pharm Biomed 47:114–125CrossRefGoogle Scholar
  3. 3.
    Pearce J (1994) Studies of any toxicological effects of Prussian blue compounds in mammals—A review. Food Chem Toxicol 32:577–582CrossRefGoogle Scholar
  4. 4.
    Hu M, Furukawa S, Ohtani R, Sukegawa H, Nemoto Y, Reboul J, Kitagawa S, Yamauchi Y (2012) Synthesis of Prussian blue nanoparticles with a hollow interior by controlled chemical etching. Angew Chem Int Ed 51:984–988CrossRefGoogle Scholar
  5. 5.
    Lian HY, Hu M, Liu CH, Yamauchi Y, Wu KCW (2012) Highly biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery. Chem Commun 48:5151–5153CrossRefGoogle Scholar
  6. 6.
    Hu M, Belik A, Imura M, Mibu K, Tsujimoto Y, Yamauchi Y (2012) Synthesis of superparamagnetic nanoporous iron oxide particles with hollow interiors by using Prussian blue coordination polymers. Chem Mater 24:2698–2707CrossRefGoogle Scholar
  7. 7.
    Chiang YD, Hu M, Kamachi Y, Ishihara S, Takai K, Tsujimoto Y, Ariga K, Wu KCW, Yamauchi Y (2013) Rational design and synthesis of cyano-bridged coordination polymers with precise control of particle size from 20 to 500 nm. Eur J Inorg Chem 2013:3141–3145CrossRefGoogle Scholar
  8. 8.
    Hu M, Ishihara S, Ariga K, Imura M, Yamauchi Y (2013) Kinetically controlled crystallization for synthesis of monodispersed coordination polymer nanocubes and their self-assembly to periodic arrangements. Chem Eur J 19:1882–1885CrossRefGoogle Scholar
  9. 9.
    Hu M, Belik AA, Imura M, Yamauchi Y (2013) Tailored design of multiple nanoarchitectures in metal-cyanide hybrid coordination polymers. J Am Chem Soc 135:384–391CrossRefGoogle Scholar
  10. 10.
    Hu M, Yamauchi Y (2011) Synthesis of a titanium-containing Prussian-blue analogue with a well-defined cube structure and its thermal conversion into a nanoporous titanium–iron-based oxide. Chem Asian J 6:2282–2286CrossRefGoogle Scholar
  11. 11.
    Thompson DF, Church CO (2001) Prussian blue for treatment of radiocesium poisoning. Pharmacotherapy 21:1364–1367CrossRefGoogle Scholar
  12. 12.
    Barton GB, Hepworth JL, McClanahan ED, Moore RL, VanTuyl HH (1958) Chemical processing wastes, recovering fission products. Ind Eng Chem 50:212–216CrossRefGoogle Scholar
  13. 13.
    Ishizaki M, Akiba S, Ohtani A, Hoshi Y, Ono K, Matsuba M, Togashi T, Kananizuka K et al (2013) Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules. Dalton Trans 42:16049–16055CrossRefGoogle Scholar
  14. 14.
    Namiki Y, Namiki T, Ishii Y, Koido S, Nagase Y, Tsubota A, Tada N, Kitamoto Y (2012) Inorganic-organic magnetic nanocomposites for use in preventive medicine: a rapid and reliable elimination system for cesium. Pharm Res 29:1404–1418CrossRefGoogle Scholar
  15. 15.
    Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 182:225–231CrossRefGoogle Scholar
  16. 16.
    Delchet C, Tokarev A, Dumail X, Toquer G, Barre Y, Guari Y, Guerin C, Larionova J, Grandjean A (2012) Extraction of radioactive cesium using innovative functionalized porous materials. RSC Adv 2:5707–5716CrossRefGoogle Scholar
  17. 17.
    Lin Y, Fryxell GE, Wu H, Englhard M (2001) Selective sorption of cesium using self-assembled monolayers on mesoporous supports. Environ Sci Technol 35:3962–3966CrossRefGoogle Scholar
  18. 18.
    Parab H, Sudersanan M (2010) Engineering a lignocellulosic biosorbent–Coir pith for removal of cesium from aqueous solutions: equilibrium and kinetic studies. Water Res 44:854–860CrossRefGoogle Scholar
  19. 19.
    Chang CY, Chau LK, Hu WP, Wang CY, Liao JH (2008) Nickel hexacyanoferrate multilayers on functionalized mesoporous silica supports for selective sorption and sensing of cesium. Microporous Mesoporous Mat 109:505–512CrossRefGoogle Scholar
  20. 20.
    Rassat SD, Sukamto JH, Orth RJ, Lilga MA, Hallen RT (1999) Development of an electrically switched ion exchange process for selective ion separations. Sep Purif Technol 15:207–222CrossRefGoogle Scholar
  21. 21.
    Lilga MA, Orth RJ, Sukamto JPH, Rassat SD, Genders JD, Gopal R (2001) Cesium separation using electrically switched ion exchange. Sep Purif Technol 24:451–466CrossRefGoogle Scholar
  22. 22.
    Chen BW, Xia XH (2007) Highly stable nickel hexacyanoferrate nanotubes for electrically switched ion exchange. Adv Funct Mater 17:2943–2948CrossRefGoogle Scholar
  23. 23.
    Lilga MA, Orth RJ, Sukamto JPH, Haight SM, Schwartz DT (1997) Metal ion separations using electrically switched ion exchange. Sep Purif Technol 11:147–158CrossRefGoogle Scholar
  24. 24.
    Chen R, Tanaka H, Kawamoto T, Asai M, Fukushima C, Kurihara M, Watanabe M, Arisaka M, Nankawa T (2012) Preparation of a film of copper hexacyanoferrate nanoparticles for electrochemical removal of cesium from radioactive wastewater. Electrochem Commun 25:23–25CrossRefGoogle Scholar
  25. 25.
    Prout WE, Russell ER, Grob HJ (1965) Ion exchange absorption of cesium by potassium hexacyanocobalt (II) ferrate (II). J Inorg Nucl Chem 27:473–479CrossRefGoogle Scholar
  26. 26.
    Chen H, Kaminski MD, Rosengart AJ (2008) 2D modeling and preliminary in vitro investigation of a prototype high gradient magnetic separator for biomedical applications. Med Eng Phys 30:1–8CrossRefGoogle Scholar
  27. 27.
    Falkenhagen D, Brandl M, Hartmann J, Kellner KH, Posnicek T, Weber V (2006) Fluidized bed adsorbent systems for extracorporeal liver support. Ther Apher Dial 10:154–159CrossRefGoogle Scholar
  28. 28.
    Brandl M, Mayer M, Hartmann J, Posnicek T, Fabian C, Falkenhagen D (2010) Theoretical analysis of ferromagnetic microparticles in streaming liquid under the influence of external magnetic forces. J Magn Magn Mater 322:2454–2464CrossRefGoogle Scholar
  29. 29.
    Berry CC, Curtis ASG (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D 36:R198–R206CrossRefGoogle Scholar
  30. 30.
    Iacob G, Rotariu O, Strachan NJC, Häfeli UO (2004) Magnetizable needles and wires-modeling an efficient way to target magnetic microspheres in vivo. Biorheology 41:599–612Google Scholar
  31. 31.
    Ritter JA, Ebner AD, Daniel KD, Stewart KL (2004) Application of high gradient magnetic separation principles to magnetic drug targeting. J Magn Magn Mater 280:184–201CrossRefGoogle Scholar
  32. 32.
    Avilės MO, Ebner AD, Chen H, Rosengart AJ, Kaminski MD, Ritter JA (2005) Theoretical analysis of a transdermal ferromagnetic implant for retention of magnetic drug carrier particles. J Magn Magn Mater 293:605–615CrossRefGoogle Scholar
  33. 33.
    Chen H, Ebner AD, Kaminski MD, Rosengart AJ, Ritter JA (2005) Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent—2: parametric study with multi-wire two-dimensional model. J Magn Magn Mater 293:616–632CrossRefGoogle Scholar
  34. 34.
    Tang SCN and Lo (2013) IMC Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632CrossRefGoogle Scholar
  35. 35.
    Arun T, Prakash K, Justin Joseyphus R (2013) Synthesis and magnetic properties of prussian blue modified Fe nanoparticles. J Magn Magn Mater 345:100–105CrossRefGoogle Scholar
  36. 36.
    Arun T, Prakash K, Kuppusamy R, Justin Joseyphus R (2013) Magnetic properties of Prussian blue modified Fe3O4 nanocubes. J Phys Chem Solids 74:1761–1768CrossRefGoogle Scholar
  37. 37.
    Kaye SS, Long JR (2007) The role of vacancies in the hydrogen storage properties of Prussian blue analogues. Catal Today 120:311–316CrossRefGoogle Scholar
  38. 38.
    Kaye SS, Long JR (2005) Hydrogen storage in the dehydrated Prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe Co, Ni, Cu, Zn). J Am Chem Soc 127:6506–6507CrossRefGoogle Scholar
  39. 39.
    Ming H, Torad NLK, Chiang YD, Wu KCW, Yamauchi Y (2012) Size-and shape-controlled synthesis of Prussian blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process. Cryst Eng Comm 14:3387–3396CrossRefGoogle Scholar
  40. 40.
    Song C, Du JP, Zhao JH, Feng SA, Du GX, Zhu ZP (2009) Hierarchical porous core– shell carbon nanoparticles. Chem Mater 21:1524–1530CrossRefGoogle Scholar
  41. 41.
    Cho W, Lee HJ, Oh M (2008) Growth-controlled formation of porous coordination polymer particles. J Am Chem Soc 130:16943–16946CrossRefGoogle Scholar
  42. 42.
    Kobler J, Bein T (2008) Porous thin films of functionalized mesoporous silica nanoparticles. ACS Nano 2:2324–2330CrossRefGoogle Scholar
  43. 43.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  44. 44.
    Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater 13:3169–3183CrossRefGoogle Scholar
  45. 45.
    Kim JO, Lee SM, Jeon C (2014) Adsorption characteristics of sericite for cesium ions from an aqueous solution. Chem Eng Res Des. doi: 10.1016/j.cherd.2013.07.020 Google Scholar
  46. 46.
    Lv K, Xiong LP, Luo YM (2013) Ion exchange properties of cesium ion sieve based on zirconium molybdopyrophosphate. Colloids Surf A 433:37–46CrossRefGoogle Scholar
  47. 47.
    Torad NL, Hu M, Imura M, Naito M, Yamauchi Y (2012) Large Cs adsorption capability of nanostructured Prussian blue particles with high accessible surface areas. J Mater Chem 22:18261–18267CrossRefGoogle Scholar
  48. 48.
    Lagergren S (1898) Zurtheorie der sogenannten adsorption gelösterstoffe. K Sven Vetenskapsakad Handl 24:1–39Google Scholar
  49. 49.
    Ho YS, McKay G (1999) Pseudo-second-order model for sorption processes. Process Biochem 34:451–465CrossRefGoogle Scholar
  50. 50.
    Thammawong C, Opaprakasit P, Tangboriboonrat P, Sreearunothai P (2013) Prussian blue modified magnetic oxide nanoparticles for removal of cesium from contaminated environment. J Nanopart Res 15:1689–1699CrossRefGoogle Scholar
  51. 51.
    Furlani EP, Ng KC (2006) Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys Rev 73:061919-1–06191910Google Scholar
  52. 52.
    Tang W, Su Y, Li Q, Gao S, Shang JK (2013) Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation. Water Res 47:3624–3634CrossRefGoogle Scholar
  53. 53.
    Shan C, Tong M (2013) Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe–Mn binary oxide. Water Res 47:3411–3421CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Magnetic Materials Laboratory, Department of PhysicsNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations