Advertisement

Journal of Materials Science

, Volume 49, Issue 19, pp 6838–6844 | Cite as

Synthesis, characterization, and antimicrobial activity of poly(GMA-co-EGDMA) polymer decorated with silver nanoparticles

  • Ivana D. Vukoje
  • Enis S. Džunuzović
  • Vesna V. Vodnik
  • Suzana Dimitrijević
  • S. Phillip Ahrenkiel
  • Jovan M. Nedeljković
Article

Abstract

Composite consisting of silver nanoparticles coordinated to poly(GMA-co-EGDMA) macroporous copolymer was prepared by attachment of amino group to the poly(GMA-co-EGDMA) in the reaction with ethylene diamine, and consequent reduction of silver ions with amino groups at elevated temperature. The infrared measurements indicated that surface of silver nanoparticles is passivated through the coordination of the lone pair on the N atom of the imine present in the skeleton of the poly(GMA-co-EGDMA) copolymer. The inductively coupled plasma atomic emission, UV–Vis reflection spectroscopy, X-ray diffraction, and transmission electron microscopy measurements revealed the high content (52 wt%) of well-separated silver nanoparticles in the size range of 5–10 nm onto composite. Antimicrobial efficiency of composite was tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus, and fungus C. albicans in wide concentration range of composite. The composite ensured almost maximum reduction of both bacteria, while the fungi reduction reached 96.5 %.

Keywords

Silver Nanoparticles EGDMA Polymer Support Glycol Dimethacrylate Surface Plasmon Resonance Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant 45020). TEM characterization work was supported by the U.S. Department of Energy, Contract No. DE-FG02-08ER64624.

Supplementary material

10853_2014_8386_MOESM1_ESM.avi (2.7 mb)
Supplementary material 1 (AVI 2724 kb)

References

  1. 1.
    Panacek A, Kvitek L, Prucek R, Kolar M, Veceroca R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253CrossRefGoogle Scholar
  2. 2.
    Rai M, Yadev A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83CrossRefGoogle Scholar
  3. 3.
    Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551CrossRefGoogle Scholar
  4. 4.
    Li Q, Mahendra S, Lyon D, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602CrossRefGoogle Scholar
  5. 5.
    Marini M, De Niederhausern S, Iseppi R, Bondi M, Sabia C, Toselli M, Pilati F (2007) Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol–gel processes. Biomacromolecules 8:1246–1254CrossRefGoogle Scholar
  6. 6.
    Qyanedel-Craver VA, Smith JA (2008) Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment. Environ Sci Technol 42:927–933CrossRefGoogle Scholar
  7. 7.
    Radetić M, Ilić V, Vodnik V, Dimitrijević S, Jovančić P, Šaponjić Z, Nedeljković JM (2008) Antibacterial effect of silver nanoparticles deposited on corona-treated polyester polyamide fabrics. Polym Adv Technol 19:1816–1821CrossRefGoogle Scholar
  8. 8.
    Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y, Liu D, Wang J, Boughton RI (2009) Silver nanoparticle-decorated porous ceramic composite for water treatment. J Membr Sci 331:50–56CrossRefGoogle Scholar
  9. 9.
    Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T, Semeraro S, Turco G, Gennaro R, Paoletti S (2009) Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules 10:1429–1435CrossRefGoogle Scholar
  10. 10.
    Ilić V, Šaponjić Vodnik V, Molina R, Dimitrijević S, Jovančić P, Nedeljković J, Radetić M (2009) Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. J Mater Sci 44:3983–3990. doi: 10.1007/s10853-009-3547-z CrossRefGoogle Scholar
  11. 11.
    Ilić V, Šaponjić Z, Vodnik V, Potkonjak B, Jovančić P, Nedeljković J, Radetić M (2009) The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles. Carbohyd Polym 78:564–569CrossRefGoogle Scholar
  12. 12.
    Ilić V, Šaponjić Z, Vodnik V, Lazarević S, Dimitrijević S, Jovančić P, Nedeljković JM, Radetić M (2010) Bactericidal efficiency of silver nanoparticles deposited onto radio frequency plasma pretreated polyester fabrics. Ind Eng Chem Res 49:7287–7293CrossRefGoogle Scholar
  13. 13.
    Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45:1992–1998CrossRefGoogle Scholar
  14. 14.
    Mthombeni NH, Mpenyana-Monyatsi L, Onyango MS, Momba MNB (2012) Breakthrough analysis for water disinfection using silver nanoparticles coated resin beads in fixed-bed column. J Hazard Mater 217–218:133–140CrossRefGoogle Scholar
  15. 15.
    Diagne F, Malaisamy R, Boddie V, Holbrook RD, Eribo B, Jones KL (2012) Polyelectrolyte and silver nanoparticle modification of microfiltration membranes to mitigate organic and bacterial fouling. Environ Sci Technol 46:4025–4033CrossRefGoogle Scholar
  16. 16.
    Ferreira A, Bigan M, Blondeau D (2003) Optimization of a polymeric HPLC phase: poly(glycidyl methacrylate-co-ethylene dimethacrylate): influence of the polymerization conditions on the pore structure of macroporous beads. React Funct Polym 56:123–136CrossRefGoogle Scholar
  17. 17.
    Miletić N, Rohandi R, Vuković Z, Nastović A, Loos K (2009) Surface modification of macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) resin for improved Candida antartica lipase B immobilization. React Funct Polym 69:68–75CrossRefGoogle Scholar
  18. 18.
    Herault D, Saluzzo C, Lemaire M (2006) Preparation of monodisperse enntiomerically pure methacrylate–ethylene glycol dimethacrylate copolymers in dispersion copolymerization: functionalization. React Funct Polym 66:567–577CrossRefGoogle Scholar
  19. 19.
    Nastović A, Jovanović S, Djordjević D, Onjia A, Jakovljević D, Novaković T (2004) Metal sorption on macroporous poly(GMA-co-EGDMA) modified with ethylene diamine. React Funct Polym 58:139–147CrossRefGoogle Scholar
  20. 20.
    Podlesnyuk VV, Hradil J, Marutovskii RM, Kliermenko NA, Fridman LE (1997) Sorption of organic compounds from aqueous solution by glycidyl methacrylate–styrene–ethylene dimethacrylate terpolymers. React Funct Polym 33:275–288CrossRefGoogle Scholar
  21. 21.
    Marinović S, Vuković Z, Nastović A, Milutinović-Nikolić A, Jovanović D (2011) Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)/clay composites. Mater Chem Phys 128:291–297CrossRefGoogle Scholar
  22. 22.
    Lv Y, Alejandro FM, Frechet JMJ, Svec F (2012) Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles. J Chromatogr A 1261:121–128CrossRefGoogle Scholar
  23. 23.
    Jovanović S, Nastović A, Jovanović N, Jeremić K, Savić Z (1994) The influence of inert component composition on the porous structure of glycidyl methacrylate/ethylene glycol dimethacrylate copolymers. Agnew Makromol Chem 219:161–168CrossRefGoogle Scholar
  24. 24.
    Varesano A, Vineis C, Aluigi A, Rombaldoni F (2011) Antimicrobial polymers for textile products. In: Mendez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances, vol 3., Formatex, microbiology series No 3University of Extremadura, Badajoz, pp 99–110Google Scholar
  25. 25.
    Miletić N (2009) Improved biocatalysts based on Candida antartica lipase B immobilization. PhD Dissertation, University of GroningenGoogle Scholar
  26. 26.
    Socrates G (2001) Infrared and Raman characteristic group frequencies. Wiley, New YorkGoogle Scholar
  27. 27.
    Chen M, Feng Y-G, Wang X, Li T-C, Zhang J-Y, Qian D-J (2007) Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 23:5296–5304CrossRefGoogle Scholar
  28. 28.
    Vukoje ID, Vodnik VV, Džunuzović JV, Džunuzović ES, Marinović-Cincović M, Jeremić K, Nedeljković JM (2014) Characterization of silver/polystyrene nanocomposites prepared by in situ bulk radical polymerization. Mater Res Bull 49:434–439CrossRefGoogle Scholar
  29. 29.
    Vuković VV, Nedeljković JM (1993) Surface modification of nanometer scale silver particles by imidazole. Langmuir 9:980–983CrossRefGoogle Scholar
  30. 30.
    Henglein A (1993) Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorptions, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471CrossRefGoogle Scholar
  31. 31.
    Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800CrossRefGoogle Scholar
  32. 32.
    Yonglai Z, Hong D, Shu W, Sen L, Yuanpeng W, Feng-Shou X (2010) Hierarchical macroporous epoxy resin template from single semi-fluorinated surfactant. J Porous Mater 17:693–698CrossRefGoogle Scholar
  33. 33.
    Xiu Z-M, Zhang Q-B, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275CrossRefGoogle Scholar
  34. 34.
    Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44:5649–5654CrossRefGoogle Scholar
  35. 35.
    Sotiriou GA, Meyer A, Knijnenburg JTN, Panke S, Pratsinis SE (2012) Quantifying the origin of released Ag+ ions from nanosilver. Langmuir 28:15929–15936CrossRefGoogle Scholar
  36. 36.
    Hwang I-S, Lee J, Hwang JH, Kim K-J, Lee DG (2012) Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J 279:1327–1338CrossRefGoogle Scholar
  37. 37.
    Linares CEB, Griebeler D, Cargnelutti D, Alves SH, Morsch VM, Schetinger MRC (2006) Catalase activity in Candida albicans exposed to antineoplastic drugs. J Med Microbiol 55:259–262CrossRefGoogle Scholar
  38. 38.
    Park B, Nizet V, Liu GY (2008) Role of Staphylococcus aureus catalase in niche competition against Streptococcus pneumonia. J Bacteriol 190:2275–2278CrossRefGoogle Scholar
  39. 39.
    Kim SH, Lee HS, Ryu DS, Choi SJ, Lee DS (2011) Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J Microbiol Biotechnol 39:77–85Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ivana D. Vukoje
    • 1
  • Enis S. Džunuzović
    • 2
  • Vesna V. Vodnik
    • 1
  • Suzana Dimitrijević
    • 2
  • S. Phillip Ahrenkiel
    • 3
  • Jovan M. Nedeljković
    • 1
  1. 1.Institute of Nuclear Sciences VinčaUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  3. 3.South Dakota School of Mines and TechnologyRapid CityUSA

Personalised recommendations