Advertisement

Journal of Materials Science

, Volume 49, Issue 19, pp 6784–6792 | Cite as

A new approach to fabricate SiC nanowire-embedded dense SiC matrix/carbon fiber composite

  • Jyoti Prakash
  • Kinshuk Dasgupta
  • B. M. Tripathi
  • J. Bahadur
  • Sunil Kumar Ghosh
  • J. K. Chakravartty
Article

Abstract

A novel and simple sol–gel route has been used for the fabrication of composite structure composed of carbon fibers and silicon carbide nanowires embedded in dense silicon carbide matrix. The carbonaceous silica sol was impregnated in the carbon fiber preform at atmospheric pressure. The sol impregnated carbon preform was cured and heat treated to convert into silicon carbide. The analysis by X-ray diffraction, scanning electron microscopy, X-ray tomography, and transmission electron microscopy indicates that the impregnated carbonaceous silica gel converts to β-silicon carbide with dense and wire morphology. Different morphological silicon carbide was uniformly distributed inside carbon fiber preform and there was no degradation in thermophysical properties of carbon composite during processing. These results reveal high efficient reinforcement of different morphological silicon carbide in carbon composite, demonstrate a new mechanism of carbon composite reinforcement and suggest a new direction to carbon composite reinforcement.

Graphical Abstract

Keywords

Phenol Formaldehyde Phenol Formaldehyde Resin Chemical Vapor Infiltration Carbon Preform High Resolution Computer Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thankfully acknowledge Dr. P.S. Sarkar, N&XPF, BARC, Dr. Abhijit Ghosh, GACD, BARC for their experimental help.

References

  1. 1.
    Fu QG, Li HJ, Li KZ, Shi XH, Huang M, Sun GD (2007) Effect of SiC whiskers on the microstructure and oxidation protective ability of SiC-CrSi2 coating for carbon/carbon composites. Mater Sci Eng A 445–446:335–338Google Scholar
  2. 2.
    Zheng GB, Hironori M, Hideaki S, Yasuo U (2008) CNT–PyC–SiC/SiC double-layer oxidation-protection coating on C/C composite. Carbon 46:1792–1802CrossRefGoogle Scholar
  3. 3.
    Chu YH, Fu QG, Cao CW, Li HJ, Li KZ, Lei Q (2010) SiC nanowire-toughened SiC–MoSi2–CrSi2 oxidation protective coating for carbon/carbon composites. Surf Coat Technol 205:413–418CrossRefGoogle Scholar
  4. 4.
    Prakash J, Venugopalan R, Paul B, Bahadur J, Ghosh SK, Sathiyamoorthy D (2013) Study of thermal degradation behavior of dense and nanostructured silicon carbide coated carbon fibers in oxidative environments. Corros Sci 67:142–151CrossRefGoogle Scholar
  5. 5.
    Sun CQ (2009) Thermo-mechanical behavior of low-dimensional systems: the local bond average approach. Prog Mater Sci 54:179–307CrossRefGoogle Scholar
  6. 6.
    Teo BK, Huang S-P, Zhang RQ, Li W-K (2009) Theoretical calculations of structures and properties of one-dimensional silicon-based nanomaterials: particularities and peculiarities of silicon and silicon-containing nanowires and nanotubes. Coord Chem Rev 253:2935–2958CrossRefGoogle Scholar
  7. 7.
    Dulera IV, Sinha RK (2008) High temperature reactors. J Nucl Mater 383:183–188CrossRefGoogle Scholar
  8. 8.
    Dasgupta K, Prakash J, Tripathi BM (2014) Novel low Wigner energy amorphous carbon–carbon composite. J Nucl Mater 445:72–77CrossRefGoogle Scholar
  9. 9.
    Yang W, Araki H, Kohyama A, Thaveethavorn S, Suzuki H, Nod T (2004) Fabrication in situ SiC nanowires/SiC matrix composite by chemical vapour infiltration process. Mater Lett 58:3145–3148CrossRefGoogle Scholar
  10. 10.
    Araki H, Yang W, Hu Q, Suzuki H, Noda T (2005) Fabrication and fracture toughness of SiC nanowires/tyranno-Sa/SiC composite. In: Novel materials processing by advanced electromagnetic energy sources, Japan, pp 369–372Google Scholar
  11. 11.
    Yang B, Chen N, Hao G, Tian J, Guo K (2013) Novel method to synthesize SiC nanowires and effect of SiC nanowires on flexural strength of Cf/SiC composite. Mater Des 52:328–331CrossRefGoogle Scholar
  12. 12.
    Yang W, Araki H, Kohyama A et al (2004) Tyranno-SA/SiC composite with SiC nanowires in the matrix by CVI process. J Nucl Mater 329–333:539–543CrossRefGoogle Scholar
  13. 13.
    Zhao K, Li K, Wang Y (2013) Rapid densification of C/SiC composite by incorporating SiC nanowires. Composites B 45:1548–1586CrossRefGoogle Scholar
  14. 14.
    Yang W, Araki H, Kohyama A et al (2007) The effect of SiC nanowires on the flexural properties of CVI-SiC/SiC composites. J Nucl Mater 367–370:708–712CrossRefGoogle Scholar
  15. 15.
    Guo X-Y, Jin G-Q (2005) Pore-size control in the sol–gel synthesis of mesoporous silicon carbide. J Mater Sci 40:1301–1303. doi: 10.1007/s10853-005-6957-6 CrossRefGoogle Scholar
  16. 16.
    Serf P, Figueiredo JL (1997) An investigation of vapor-grown carbon fiber behavior towards air oxidation. Carbon 35:675–683CrossRefGoogle Scholar
  17. 17.
    Miura K, Nakagawa H, Hashimoto K (1995) Examination of the oxidative stabilization reaction of the pitch-based carbon fiber through continuous measurement of oxygen chemisorption and gas formation rate. Carbon 33:275–282CrossRefGoogle Scholar
  18. 18.
    Warren BE (1941) X-ray diffraction in random layer lattices. Phys Rev 59:693–698CrossRefGoogle Scholar
  19. 19.
    Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addision-Wesley, London, p 828Google Scholar
  20. 20.
    Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Gott 2:98–100Google Scholar
  21. 21.
    Bahadur J, Sen D, Mazumder S, Shukla R, Tyagi AK (2008) Non-Debye to Debye transition of ac dielectric response in YCrO3 nanoceramic under sintering: effect of pore structure. J Phys Condens Matter 20:345201–345207CrossRefGoogle Scholar
  22. 22.
    Wu YY, Yang PD (2001) Direct observation of vapor–liquid–solid nanowire growth. J Am Chem Soc 123:3165–3166CrossRefGoogle Scholar
  23. 23.
    Liu C, Hu Z, Wu Q, Wang XZ, Chen Y, Sang H (2005) Vapor–solid growth and characterization of aluminum nitride nanocones. J Am Chem Soc 127:1318–1322CrossRefGoogle Scholar
  24. 24.
    Guterl CV, Ehrburger P (1997) Effect of the properties of a carbon substrate on its reaction with silica for silicon carbide formation. Carbon 35:1587–1592CrossRefGoogle Scholar
  25. 25.
    Wang W, Jin ZH, Xue T, Yang GB, Qiao GJ (2007) Preparation and characterization of SiC nanowires and nanoparticles from filter paper by sol–gel and carbothermal reduction processing. J Mater Sci 42:6439–6445. doi: 10.1007/s10853-006-1202-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jyoti Prakash
    • 1
    • 4
  • Kinshuk Dasgupta
    • 1
  • B. M. Tripathi
    • 1
  • J. Bahadur
    • 2
  • Sunil Kumar Ghosh
    • 3
  • J. K. Chakravartty
    • 1
  1. 1.Materials GroupBhabha Atomic Research CentreMumbaiIndia
  2. 2.Solid State Physics DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Bio Organic DivisionBhabha Atomic Research CentreMumbaiIndia
  4. 4.Powder Metallurgy DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations