Journal of Materials Science

, Volume 49, Issue 17, pp 6118–6126 | Cite as

Improvement of hydrothermally synthesized MnO2 electrodes on Ni foams via facile annealing for supercapacitor applications

  • T. Zhu
  • S. J. Zheng
  • Y. G. Chen
  • J. Luo
  • H. B. Guo
  • Y. E. Chen


Nanostructured manganese dioxide (MnO2) is deposited on nickel foams by a hydrothermal synthesis route. As-deposited MnO2 thin films are largely amorphous. Facile post-deposition annealing significantly improves the electrochemical performance of the MnO2 thin films via changing their morphology, phase, and crystallinity. The specific capacitance of the MnO2 electrode increases with the annealing temperature and reaches an optimal value of 244 F g−1 (at the current density of 1 A g−1) in a neutral 1 M Na2SO4 electrolyte for a specimen annealed at 500 °C. Furthermore, when an alkaline 5 M KOH electrolyte is used, an exceptionally high capacitance of 950 F g−1 is achieved at the current density of 2 A g−1. The cost-effective facile synthesis, high specific capacitance, and good cycle stability of these MnO2-based electrodes enable their applications in high-performance supercapacitors.


MnO2 Specific Capacitance Hydrothermal Synthesis Cyclic Voltammetry Curve Manganese Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study is primarily supported by Shanghai Pujiang Program under Grant No. 11PJ1403400. J. Luo acknowledges an NSF Grant No. DMR-1320615 for supporting his research in the area of oxides/ceramics for energy storage and a National Natural Science Foundation of China Grant No. 51228202 for partially supporting his travel to Shanghai to conduct collaborative research. The authors thank the support from the Instrumental Analysis and Research Center of Shanghai University and GE (China) Research and Development Center Co., Ltd.


  1. 1.
    Subramanian V, Wei ZH, Vajtai R et al (2005) Hydrothermal synthesis and pseudocapacitance properties of MNO2 nanostructures. J Phys Chem B 109(43):20207–20214CrossRefGoogle Scholar
  2. 2.
    Zheng JP, Cygan PJ, Jow TR (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc 142(8):2699–2703CrossRefGoogle Scholar
  3. 3.
    Zhang FB, Zhou YK, Li HL (2004) Nanocrystalline NiO as an electrode material for electrochemical capacitor. Mater Chem Phys 83(2):260–264CrossRefGoogle Scholar
  4. 4.
    Meher SK, Rao GR (2011) Ultralayered Co3O4 for high-performance supercapacitor applications. J Phys Chem C 115(31):15646–15654CrossRefGoogle Scholar
  5. 5.
    Lee HY, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144(1):220–223CrossRefGoogle Scholar
  6. 6.
    Wu MQ, Zhang LP, Gao JH et al (2008) Effects of thickness and electrolytes on the capacitive characteristics of anodically deposited hydrous manganese oxide coatings. J Electroanal Chem 613(2):125–130CrossRefGoogle Scholar
  7. 7.
    Pang SC, Anderson MA, Chapman TW (2000) Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol–gel-derived and electrodeposited manganese dioxide. J Electrochem Soc 147(2):444–450CrossRefGoogle Scholar
  8. 8.
    Lu ZY, Chang Z, Liu JF, Sun XM (2011) Stable ultrahigh specific capacitance of NiO nanorod arrays. Nano Res 4(7):658–665CrossRefGoogle Scholar
  9. 9.
    Yan DL, Guo ZL, Zhu GS et al (2012) MnO2 film with three-dimensional structure prepared by hydrothermal process for supercapacitor. J Power Sources 199:409–412CrossRefGoogle Scholar
  10. 10.
    Liu JL, Fan LZ, Qu XH (2012) Low temperature hydrothermal synthesis of nano-sized manganese oxide for supercapacitors. Electrochim Acta 66:302–305CrossRefGoogle Scholar
  11. 11.
    Ragupathy P, Vasan HN, Munichandraiah N (2008) Synthesis and characterization of nano-MnO2 for electrochemical supercapacitor studies. J Electrochem Soc 155(1):A34–A40CrossRefGoogle Scholar
  12. 12.
    Tang N, Tian XK, Yang C, Pi ZB (2009) Facile synthesis of α-MnO2 nanostructures for supercapacitors. Mater Res Bull 44(11):2062–2067CrossRefGoogle Scholar
  13. 13.
    Fang DL, Wu BC, Mao AQ et al (2010) Supercapacitive properties of ultra-fine MnO2 prepared by a solid-state coordination reaction. J Alloys Compd 507(2):526–530CrossRefGoogle Scholar
  14. 14.
    Yu HJ, Wu JH, Fan LQ et al (2012) Application of a novel redox-active electrolyte in MnO2-based supercapacitors. Sci China Chem 55(7):1319–1324CrossRefGoogle Scholar
  15. 15.
    Yuan AB, Wang XL, Wang YQ, Hu J (2010) Comparison of nano-MnO2 derived from different manganese sources and influence of active material weight ratio on performance of nano-MnO2/activated carbon supercapacitor. Energy Convers Manag 51(12):2588–2594CrossRefGoogle Scholar
  16. 16.
    Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828CrossRefGoogle Scholar
  17. 17.
    Duan XC, Yang JQ, Gao HY et al (2012) Controllable hydrothermal synthesis of manganese dioxide nanostructures: shape evolution, growth mechanism and electrochemical properties. Cryst Eng Comm 14(12):4196–4204CrossRefGoogle Scholar
  18. 18.
    Zhang X, Sun XZ, Zhang HT et al (2013) Microwave-assisted reflux rapid synthesis of MnO2 nanostructures and their application in supercapacitors. Electrochim Acta 87:637–644CrossRefGoogle Scholar
  19. 19.
    Zhao YQ, Zhao DD, Tang PY et al (2012) MnO2/graphene/nickel foam composite as high performance supercapacitor electrode via a facile electrochemical deposition strategy. Mater Lett 76:127–130CrossRefGoogle Scholar
  20. 20.
    Song XC, Zhao Y, Zheng YF (2006) Synthesis of MnO2 nanostructures with sea urchin shapes by a sodium dodecyl sulfate-assisted hydrothermal process. Cryst Growth Des 7(1):159–162CrossRefGoogle Scholar
  21. 21.
    Ding R, Qi L, Jia MJ, Wang HY (2014) Sodium dodecyl sulfate-assisted hydrothermal synthesis of mesoporous nickel cobaltite nanoparticles with enhanced catalytic activity for methanol electrooxidation. J Power Sources 251:287–295CrossRefGoogle Scholar
  22. 22.
    Xu MW, Zhao DD, Bao SJ, Li HL (2007) Mesoporous amorphous MnO2 as electrode material for supercapacitor. J Solid State Electrochem 11(8):1101–1107CrossRefGoogle Scholar
  23. 23.
    Wu YS, Lu Y, Song CJ et al (2013) A novel redox-precipitation method for the preparation of α-MnO2 with a high surface Mn4+ concentration and its activity toward complete catalytic oxidation of o-xylene. Catal Today 201:32–39CrossRefGoogle Scholar
  24. 24.
    Wang HQ, Yang GF, Li QY et al (2011) Porous nano-MnO2: large scale synthesis via a facile quick-redox procedure and application in a supercapacitor. New J Chem 35(2):469–475CrossRefGoogle Scholar
  25. 25.
    Raymundo-Piñero E, Khomenko V, Frackowiak E, Béguin F (2005) Performance of manganese oxide/CNTS composites as electrode materials for electrochemical capacitors. J Electrochem Soc 152(1):A229–A235CrossRefGoogle Scholar
  26. 26.
    Xiao W, Xia H, Fuh JYH, Lu L (2009) Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties. J Power Sources 193(2):935–938CrossRefGoogle Scholar
  27. 27.
    Liu KY, Zhang Y, Zhang W et al (2007) Charge-discharge process of MnO2 supercapacitor. Trans Nonferr Met Soc China 17(3):649–653CrossRefGoogle Scholar
  28. 28.
    Ming BS, Li JL, Kang FY et al (2012) Microwave-hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials. J Power Sources 198:428–431CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • T. Zhu
    • 1
  • S. J. Zheng
    • 1
  • Y. G. Chen
    • 1
  • J. Luo
    • 2
  • H. B. Guo
    • 1
  • Y. E. Chen
    • 1
  1. 1.Department of Electronic Information Materials, School of Materials Science and EngineeringShanghai UniversityShanghaiChina
  2. 2.Department of NanoEngineering, Program of Materials Science and EngineeringUniversity of CaliforniaSan DiegoUSA

Personalised recommendations