Journal of Materials Science

, Volume 49, Issue 17, pp 6048–6055 | Cite as

Thermal conductivities of alumina-based multiwall carbon nanotube ceramic composites

  • Kaleem Ahmad
  • Pan Wei
  • Chunlei Wan


Composites incorporating various vol.% (0.0, 1.1, 6.4, and 10.4) of multiwall carbon nanotubes (MWCNTs) in alumina were consolidated by the spark plasma sintering. Their thermal transport properties were investigated over the temperature range 300–800 K as a function of nanotube contents. It was observed that the temperature-dependent effective thermal conductivity decreases with the addition of MWCNTs in alumina. This behavior was analyzed in terms of phonon mean free path, elastic modulus, average sound speed, and interface thermal resistance. Compared with 1/T behavior for pristine alumina, a subtle decrease in temperature dependence of the thermal conductivity of the composites with the addition of MWCNTs is observed, indicating the presence of extra phonon scattering mechanism beyond the intrinsic phonon–phonon scattering. Simulation of experimental results with theoretical model shows that the large interfacial thermal barrier between MWCNTs and alumina plays a dominant role in controlling thermal transport properties of the composites. In addition to dominant interface thermal resistance other secondary factors such as nanotube agglomeration, processing defects, porosity also contribute for low thermal conductivity at the higher volume fraction of MWCNTs in the composite.


Thermal Conductivity Sound Speed Spark Plasma Sinter Effective Thermal Conductivity Interface Thermal Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the National Natural Science Foundation of China (No. 51272120, 50990302, 51323001).


  1. 1.
    Harris PJF (2004) Carbon nanotube composites. Int Mater Rev 49:31–43CrossRefGoogle Scholar
  2. 2.
    Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRefGoogle Scholar
  3. 3.
    Li HJ, Lu WG, Li JJ, Bai XD, Gu CZ (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95:086601CrossRefGoogle Scholar
  4. 4.
    Ando Y, Zhao X, Shimoyama H, Sakai G, Kaneto K (1999) Physical properties of multiwalled carbon nanotubes. Int J Inorg Mater 1:77–82CrossRefGoogle Scholar
  5. 5.
    Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502CrossRefGoogle Scholar
  6. 6.
    Wang J, Wang J-S (2006) Carbon nanotube thermal transport: ballistic to diffusive. Appl Phys Lett 88:111909CrossRefGoogle Scholar
  7. 7.
    Xu Z, Buehler MJ (2009) Nanoengineering heat transfer performance at carbon nanotube interfaces. ACS Nano 3:2767–2775CrossRefGoogle Scholar
  8. 8.
    Zhan GD, Kuntz JD, Wan JL, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2:38–42CrossRefGoogle Scholar
  9. 9.
    Ahmad K, Pan W (2009) Dramatic effect of multiwalled carbon nanotubes on the electrical properties of alumina based ceramic nanocomposites. Compos Sci Technol 69:1016–1021CrossRefGoogle Scholar
  10. 10.
    Ahmad K, Pan W, Shi S-L (2006) Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites. Appl Phys Lett 89:133122CrossRefGoogle Scholar
  11. 11.
    Corral EL, Wang H, Garay J, Munir Z, Barrera EV (2011) Effect of single-walled carbon nanotubes on thermal and electrical properties of silicon nitride processed using spark plasma sintering. J Eur Ceram Soc 31:391–400CrossRefGoogle Scholar
  12. 12.
    Ahmad K, Pan W (2009) Nanostructured materials and nanotechnology ii: ceramic engineering and science proceedings, vol 29, 8th edn. John Wiley & Sons, Inc., HobokenGoogle Scholar
  13. 13.
    Zhan GD, Mukherjee AK (2004) Carbon nanotube reinforced alumina-based ceramics with novel mechanical, electrical, and thermal properties. Int J Appl Ceram Technol 1:161–171CrossRefGoogle Scholar
  14. 14.
    Zapata-Solvas E, Gomez-Garcia D, Dominguez-Rodriguez A (2012) Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites. J Eur Ceram Soc 32:3001–3020CrossRefGoogle Scholar
  15. 15.
    Bakshi SR, Balani K, Agarwal A (2008) Thermal conductivity of plasma-sprayed aluminum oxide—multiwalled carbon nanotube composites. J Am Ceram Soc 91:942–947CrossRefGoogle Scholar
  16. 16.
    Kumari L, Zhang T, Du GH et al (2008) Thermal properties of CNT-Alumina nanocomposites. Compos Sci Technol 68:2178–2183CrossRefGoogle Scholar
  17. 17.
    Pop E, Mann D, Wang Q, Goodson K, Dai H (2005) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100CrossRefGoogle Scholar
  18. 18.
    Zhan GD, Kuntz JD, Garay JE, Mukherjee AK (2003) Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes. Appl Phys Lett 83:1228–1230CrossRefGoogle Scholar
  19. 19.
    Hao Y, Zhang QF, Wei F, Qian WZ, Luo GH (2003) Agglomerated CNTs synthesized in a fluidized bed reactor: agglomerate structure and formation mechanism. Carbon 41:2855–2863CrossRefGoogle Scholar
  20. 20.
    Wang Y, Wei F, Luo GH, Yu H, Gu GS (2002) The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chem Phys Lett 364:568–572CrossRefGoogle Scholar
  21. 21.
    Yang K, He J, Su Z et al (2010) Inter-tube bonding, graphene formation and anisotropic transport properties in spark plasma sintered multi-wall carbon nanotube arrays. Carbon 48:756–762CrossRefGoogle Scholar
  22. 22.
    Ahmad I, Unwin M, Cao H et al (2010) Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: mechanical properties and interfacial investigations. Compos Sci Technol 70:1199–1206CrossRefGoogle Scholar
  23. 23.
    Ning JW, Zhang JJ, Pan YB, Guo JK (2003) Fabrication and mechanical properties of SiO2 matrix composites reinforced by carbon nanotube. Mater Sci Eng A 357:392–396CrossRefGoogle Scholar
  24. 24.
    Schlichting KW, Padture NP, Klemens PG (2001) Thermal conductivity of dense and porous yttria-stabilized zirconia. J Mater Sci 36:3003–3010CrossRefGoogle Scholar
  25. 25.
    Barin I (1993) Thermochemical data of pure substances. VCH, WeinheimGoogle Scholar
  26. 26.
    Zhang HL, Li JF, Zhang BP, Yao KF, Liu WS, Wang H (2007) Electrical and thermal properties of carbon nanotube bulk materials: experimental studies for the 328–958 K temperature range. Phys Rev B 75:205407CrossRefGoogle Scholar
  27. 27.
    Qin C, Shi X, Bai SQ, Chen LD, Wang LJ (2006) High temperature electrical and thermal properties of the bulk carbon nanotube prepared by SPS. Mater Sci Eng A 420:208–211CrossRefGoogle Scholar
  28. 28.
    Miranzo P, García E, Ramírez C, González-Julián J, Belmonte M, Isabel Osendi M (2012) Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures. J Eur Ceram Soc 32:1847–1854CrossRefGoogle Scholar
  29. 29.
    Xie H (2007) Thermal and electrical transport properties of a self-organized carbon nanotube pellet. J Mater Sci 42:3695–3698CrossRefGoogle Scholar
  30. 30.
    Xie H, Cai A, Wang X (2007) Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays. Phys Lett A 369:120–123CrossRefGoogle Scholar
  31. 31.
    Huang Q, Gao L, Liu YQ, Sun J (2005) Sintering and thermal properties of multiwalled carbon nanotube-BaTiO3 composites. J Mater Chem 15:1995–2001CrossRefGoogle Scholar
  32. 32.
    Li J, Wang L, He T, Jiang W (2009) Transport properties of hot-pressed bulk carbon nanotubes compacted by spark plasma sintering. Carbon 47:1135–1140CrossRefGoogle Scholar
  33. 33.
    Dresselhaus MS, Eklund PC (2000) Phonons in carbon nanotubes. Adv Phys 49:705–814CrossRefGoogle Scholar
  34. 34.
    Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767–2769CrossRefGoogle Scholar
  35. 35.
    Li GH, Hu ZX, Zhang LD, Zhang ZR (1998) Elastic modulus of nano-alumina composite. J Mater Sci Lett 17:1185–1186CrossRefGoogle Scholar
  36. 36.
    Zhang SC, Fahrenholtz WG, Hilmas GE, Yadlowsky EJ (2010) Pressureless sintering of carbon nanotube-Al2O3 composites. J Eur Ceram Soc 30:1373–1380CrossRefGoogle Scholar
  37. 37.
    Clarke DR (2003) Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Technol 163–164:67–74CrossRefGoogle Scholar
  38. 38.
    Kittel C (2004) Introduction to solid state physics, 8th edn. Wiley, HobokenGoogle Scholar
  39. 39.
    Yang DJ, Zhang Q, Chen G et al (2002) Thermal conductivity of multiwalled carbon nanotubes. Phys Rev. B 66:165440CrossRefGoogle Scholar
  40. 40.
    Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616CrossRefGoogle Scholar
  41. 41.
    Swartz ET, Pohl RO (1989) Thermal boundary resistance. Rev Mod Phys 61:605–668CrossRefGoogle Scholar
  42. 42.
    Sukhadolau AV, Ivakin EV, Ralchenko VG, Khomich AV, Vlasov AV, Popovich AF (2005) Thermal conductivity of CVD diamond at elevated temperatures Diamond. Relat Mater 14:589–593CrossRefGoogle Scholar
  43. 43.
    David GC, Wayne KF, Kenneth EG et al (2003) Nanoscale thermal transport. J Appl Phys 93:793–818CrossRefGoogle Scholar
  44. 44.
    Huxtable ST, Cahill DG, Shenogin S et al (2003) Interfacial heat flow in carbon nanotube suspensions. Nat Mater 2:731–734CrossRefGoogle Scholar
  45. 45.
    Mukhopadhyay A, Otieno G, Chu BTT, Wallwork A, Green MLH, Todd RI (2011) Thermal and electrical properties of aluminoborosilicate glass-ceramics containing multiwalled carbon nanotubes. Scr Mater 65:408–411CrossRefGoogle Scholar
  46. 46.
    Nan CW, Liu G, Lin YH, Li M (2004) Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett 85:3549–3551CrossRefGoogle Scholar
  47. 47.
    Nan CW, Shi Z, Lin Y (2003) A simple model for thermal conductivity of carbon nanotube-based composites. Chem Phys Lett 375:666–669CrossRefGoogle Scholar
  48. 48.
    Sivakumar R, Guo S, Nishimura T, Kagawa Y (2007) Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites. Scr Mater 56:265–268CrossRefGoogle Scholar
  49. 49.
    Wei T, Fan Z, Luo G, Wei F (2008) A new structure for multi-walled carbon nanotubes reinforced alumina nanocomposite with high strength and toughness. Mater Lett 62:641–644CrossRefGoogle Scholar
  50. 50.
    Chu K, Guo H, Jia C et al (2010) Thermal properties of carbon nanotube-copper composites for thermal management applications. Nanoscale Res Lett 5:868–874CrossRefGoogle Scholar
  51. 51.
    Zhang HL, Li JF, Yao KF, Chen LD (2005) Spark plasma sintering and thermal conductivity of carbon nanotube bulk materials. J Appl Phys 97:114310CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.Graduate School of EngineeringNagoya UniversityNagoyaJapan
  3. 3.Sustainable Energy Technologies CenterKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations