Journal of Materials Science

, Volume 49, Issue 17, pp 5997–6006 | Cite as

Study on Mn-induced Jahn–Teller distortion in BiFeO3 thin films

  • Surbhi Gupta
  • Monika Tomar
  • Vinay Gupta


Present work reports Raman spectroscopy study of single-phase Mn-doped BiFeO3 [BiFe1−x Mn x O3 (0 ≤ x ≤ 0.20)] polycrystalline thin films carried out in backscattering geometry. De-convolution of Raman spectra showed a gradual transition in the crystal symmetry from rhombohedral (−R) to multiphase [rhombohedral (−R) + tetragonal (−T)] structure with increasing Mn doping concentration in BiFe1−x Mn x O3 (BFMO) thin films. X-ray diffraction (XRD) along with Le-Bail extraction refinement confirms that the structural symmetry lowering in BFMO thin films occurs at about 10 % Mn doping concentration. A blue shift is observed in the direct energy band gap of BFMO thin films from 2.53 to 2.87 eV (at T = 295 K) and is attributed to the local symmetry lowering and local induced strain in Fe3+ environment resulted from Jahn–Teller distortion in (MnFe)3+O6 octahedral unit. Second-derivative analysis of FTIR spectra in the spectral regions (420–470) cm−1 and (480–680) cm−1 further indicates the favourable structure distortion leading to the simultaneous exhibition of enhanced ferromagnetic and ferroelectric properties owing to Mn substitution in host BiFeO3 lattice.


BiFeO3 Phonon Mode Thin Film Sample Lattice Dynamic Property Vibrational Phonon Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors are thankful to the Department of Science & Technology (DST), Government of India for the financial support to carry out the work. One of the authors (SG) is thankful to the University of Delhi for the research fellowship (UTA).


  1. 1.
    Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442:759–764CrossRefGoogle Scholar
  2. 2.
    Ramesh R, Spaldin NA (2007) Multiferroics: progress and prospects in thin films. Nat Mater 6:21–29CrossRefGoogle Scholar
  3. 3.
    Uniyal P, Yadav KL (2009) Observation of the room temperature magnetoelectric effect in Dy doped BiFeO3. J Phys: Condens Matter 21:012205(1)–012205(4)Google Scholar
  4. 4.
    Allibe J, Robin KB, Jacquet E, Infante IC, Fusil S, Carrétéro C, Reverchon JL, Marcilhac B, Creté D, Mage JC, Barthélémy A, Bibes M (2010) Optical properties of integrated multiferroic BiFeO3 thin films for microwave applications. Appl Phys Lett 96:182902(1)–182902(3)Google Scholar
  5. 5.
    Chen P, Podraza NJ, Xu XS, Melville A, Vlahos E, Gopalan V, Ramesh R, Schlom DG, Musfeldt JL (2010) Optical properties of quasi-tetragonal thin films. Appl Phys Lett 96:131907(1)–131907(3)Google Scholar
  6. 6.
    Vengalis B, Devenson J, Oginskis AK, Lisauskas V, Anisimovas F, Butkute R, Dapkus L (2009) Optical and electrical properties of Nd-doped BiFeO3 thin films and heterostructures. Phys Status Solidi C 6(12):2746–2749CrossRefGoogle Scholar
  7. 7.
    Karimi S, Reaney IM, Han Y, Pokorny J, Sterianou I (2009) Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics. J Mater Sci 44:5102–5112CrossRefGoogle Scholar
  8. 8.
    Kan D, Suchoski R, Fujino S, Takeuchi I (2009) Combinatorial investigation of structural and ferroelectric properties of A- and B-site co-doped BiFeO3 thin films. Integr Ferroelect 111:116–124CrossRefGoogle Scholar
  9. 9.
    Rabe KM (2005) Theoretical investigations of epitaxial strain effects in ferroelectric oxide thin films and superlattices. Curr Opin Solid State Mater Sci 9:122–127CrossRefGoogle Scholar
  10. 10.
    Kharel P, Talebi S, Ramachandran B, Dixit A, Naik VM, Sahana MB, Sudakar C, Naik R, Rao MSR, Lawes G (2009) Structural, magnetic, and electrical studies on polycrystalline transition-metal-doped BiFeO3 thin films. J Phys: Condens Matter 21:036001(1)–036001(6)Google Scholar
  11. 11.
    Chen P, Xu X, Koenigsmann C, Santulli AC, Wong SS, Musfeldt JL (2010) Size-dependent infrared phonon modes and ferroelectric phase transition in BiFeO3 nanoparticles. Nano Lett 10:4526–4532CrossRefGoogle Scholar
  12. 12.
    Jaiswal A, Das R, Maity T, Vivekanand K, Adyanthaya S, Poddar P (2010) Temperature-dependent Raman and dielectric spectroscopy of BiFeO3 nanoparticles: signatures of spin-phonon and magnetoelectric coupling. J Phys Chem C 114:12432–12439CrossRefGoogle Scholar
  13. 13.
    Kumar A, Scott JF, Katiyar RS (2011) Electric control of magnon frequencies and magnetic moment of bismuth ferrite thin films at room temperature. Appl Phys Lett 99:062504(1)–062504(3)Google Scholar
  14. 14.
    Hermet P, Goffinet M, Kreisel J, Ghosez P (2007) Raman and infrared spectra of multiferroic bismuth ferrite from first principles. Phys Rev B 75:220102(1)–220102(4)Google Scholar
  15. 15.
    Tütüncü HM, Srivastava GP (2008) Electronic structure and lattice dynamical properties of different tetragonal phases of BiFeO3. Phys Rev B 78:235209(1)–235209(10)Google Scholar
  16. 16.
    Lahmar A, Habouti S, Dietze M, Solterbeck CH, Souni ME (2009) Effects of rare earth manganites on structural, ferroelectric, and magnetic properties of BiFeO3 thin films. Appl Phys Lett 94:012903(1)–012903(3)Google Scholar
  17. 17.
    Reddy VR, Kothari D, Gupta A, Gupta SM (2009) Study of weak ferromagnetism in polycrystalline multiferroic Eu doped bismuth ferrite. Appl Phys Lett 94:082505(1)–082505(3)Google Scholar
  18. 18.
    Yuan GL, Or SW, Chan HL (2007) Structural transformation and ferroelectric–paraelectric phase transition in Bi1-xLaxFeO3 (x = 0–0.25) multiferroic ceramics. J Phys D Appl Phys 40:1196–1200CrossRefGoogle Scholar
  19. 19.
    Bhushan B, Wang Z, Tol JV, Dalal NS, Basumallick A, Vasanthacharya NY, Kumar S, Das D (2012) Tailoring the magnetic and optical characteristics of nanocrystalline BiFeO3 by Ce doping. J Am Ceram Soc 95:1985–1992CrossRefGoogle Scholar
  20. 20.
    Mishra DK, Qi X (2010) Energy levels and photoluminescence properties of nickel-doped bismuth ferrite. J Alloys Compd 504:27–31CrossRefGoogle Scholar
  21. 21.
    Gupta S, Sharma A, Tomar M, Gupta V, Pal M, Guo R, Bhalla A (2012) Piezoresponse force microscopy and vibrating sample magnetometer study of single phased Mn induced multiferroic BiFeO3 thin film. J Appl Phys 111:064110(1)–064110(6)Google Scholar
  22. 22.
    Gupta S, Tomar M, James AR, Gupta V. Ce-doped bismuth ferrite thin films with improved electrical and functional properties. J Mater Sci. doi: 10.1007/s10853-014-8243-y
  23. 23.
    Kothari D, Reddy VR, Sathe VG, Gupta A, Banerjee A, Awasthi AM (2008) Raman scattering study of polycrystalline magnetoelectric BiFeO3. J Magn Magn Mater 320:548–552CrossRefGoogle Scholar
  24. 24.
    Singh MK, Ryu S, Jang HM (2005) Polarized Raman scattering of multiferroic BiFeO3 thin films with pseudo-tetragonal symmetry. Phys Rev B 72:132101(1)–132101(4)Google Scholar
  25. 25.
    Szafraniak I, Polomska M, Hilczer B, Pielraszko A, Kepinski L (2007) Characterization of BiFeO3 nanopowder obtained by mechanochemical synthesis. J Eur Ceram Soc 27:4399–4402CrossRefGoogle Scholar
  26. 26.
    Yuan GL, Or SW, Chan HL (2007) Raman scattering spectra and ferroelectric properties of Bi1–xNdxFeO3 (x = 0 − 0.2) multiferroic ceramics. J Appl Phys 101:064101(1)–064101(5)Google Scholar
  27. 27.
    Carrón LM, Andrés AD, Lope MJM, Casais MT, Alonso JA (2002) Raman phonons as a probe of disorder, fluctuations, and local structure in doped and undoped orthorhombic and rhombohedral manganites. Phys Rev B 66:174303(1)–174303(8)Google Scholar
  28. 28.
    Kartopu G, Lahmar A, Habouti S (2008) Observation of structural transitions and Jahn–Teller distortion in LaMnO3-doped BiFeO3 thin films. Appl Phys Lett 92:151910(1)–151910(3)Google Scholar
  29. 29.
    Farhadi S, Zaidi M (2009) Bismuth ferrite (BiFeO3) nanopowder prepared by sucrose-assisted combustion method: a novel and reusable heterogeneous catalyst for acetylation of amines, alcohols and phenols under solvent-free conditions. J Mol Catal A 299:18–25CrossRefGoogle Scholar
  30. 30.
    Chertihin GV, Andrews L (1997) Reactions of laser-ablated manganese atoms with dioxygen. Infrared spectra of MnO, OMnO, Mn(O2), (MnO)2, and higher oxide complexes in solid argon. J Phys Chem A 101:8547–8553CrossRefGoogle Scholar
  31. 31.
    Popescu MC, Filip D, Vasile C, Cruz C, Rueff JM, Marcos M, Serrano JL, Singurel G (2006) Characterization by fourier-transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of PAMAM dendrimer. J Phys Chem B 110(29):14198–14211CrossRefGoogle Scholar
  32. 32.
    Priyam A, Blumling DE, Knappenberger KL (2010) Synthesis, characterization, and self-organization of dendrimer-encapsulated HgTe quantum dots. Langmuir 26(13):10636–10644CrossRefGoogle Scholar
  33. 33.
    Rao GVS, Rao CNR, Ferraro JR (1970) Infrared and electronic spectra of rare earth perovskites: ortho-chromites, -manganites and -ferrites. Appl Spectrosc 24:436–445CrossRefGoogle Scholar
  34. 34.
    Som KK, Molla S, Bose K, Chaudhury BK (1992) Nonlinear physical properties of amorphous Bi4Sr3Ca3CuyOx semiconducting oxides with y between 0 and 5. Phys Rev B 45:1655–1659CrossRefGoogle Scholar
  35. 35.
    Azama A, Jawadb A, Ahmed AS, Chamanb M, Naqvib AH (2011) Structural, optical and transport properties of Al3+ doped BiFeO3 nanopowder synthesized by solution combustion method. J Alloys Compd 509:2909–2913CrossRefGoogle Scholar
  36. 36.
    Burke JT (1997) IR spectroscopy or Hooke’s law at the molecular level—a joint freshman physics-chemistry experience. J Chem Edu 74:1213CrossRefGoogle Scholar
  37. 37.
    Buciuman F, Patcas F, Craciun R, Zahn DRT (1999) Vibrational spectroscopy of bulk and supported manganese oxides. Phys Chem Chem Phys 1:185–190CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia
  2. 2.Physics Department, Miranda HouseUniversity of DelhiDelhiIndia

Personalised recommendations