Journal of Materials Science

, Volume 49, Issue 17, pp 5945–5954 | Cite as

A facile room temperature synthesis of ZnO nanoflower thin films grown at a solid–liquid interface

  • Aarti H. Jadhav
  • Sagar H. Patil
  • Shivaram D. Sathaye
  • Kashinath R. Patil


Hierarchical ZnO films consisting of nanoflower particulates are successfully grown by a solid–liquid interface reaction technique at room temperature without additives like surfactants, capping agent, or complexing agent. The structural, morphological, and photocatalytic properties of these films are studied using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV–Vis spectroscopy. The nucleation, growth processes and hence the resulting morphology of the end product can be regulated by changing the concentration of LiOH and the time of reaction. SEM throws light on the chronology of the flower formation by studying the intermediate morphology. Electron microscopy results indicated that these ZnO nanostructures self-assembled to produce flower-like nanostructures. The highest photocatalytic efficiency was observed for the films prepared at the concentration of LiOH 0.5 mg/mL in ethanol at 24 h. On the basis of the results, a plausible growth mechanism for the formation of flower-like ZnO nanostructures is discussed.


Photocatalytic Activity Photocatalytic Degradation Zinc Acetate LiOH Zinc Acetate Dihydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thanks to A. B. Gaikwad, R. S. Gholap, Ketan, and Shravani for helping in SEM and TEM characterization. Virendra, Ashwini, Babasaheb, and Prashant Gaikwad for their help and moral support. One of the author (Sagar Patil) wish to express his gratitude to CSIR and UGC, New Delhi for their support in this work.

Supplementary material

10853_2014_8313_MOESM1_ESM.doc (202 kb)
XPS, UV–visible, and dye degradation of ZnO nanoflower (DOC 202 kb)


  1. 1.
    Zamfirescu M, Kavokin A, Gil B, Malpuech G, Kaliteevski M (2002) ZnO as a material mostly adapted for the realization of room-temperature polariton lasers. Phys. Rev. B 65:161205-1–161205-4CrossRefGoogle Scholar
  2. 2.
    Inoue Y, Okamoto M, Kawahara T, Morimoto J (2006) Photoacoustic spectra on Pr doped ZnO powders. J Alloy Compd 408–412:1234–1237CrossRefGoogle Scholar
  3. 3.
    Zhao F, Li X, Zheng J, Yang X, Zhao F, Wong KS, Wang J, Lin W, Wu M, Su Q (2008) ZnO pine-nanotree arrays grown from facile metal chemical corrosion and oxidation. Chem Mater 20:1197–1199CrossRefGoogle Scholar
  4. 4.
    Calhoun MF, Sanchez J, Olaya D, Gershenson ME, Podzoro V (2008) Electronic functionalization of the surface of organic semiconductors with self-assembled monolayers. Nat Mater 7:84–89CrossRefGoogle Scholar
  5. 5.
    Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899CrossRefGoogle Scholar
  6. 6.
    Konenkamp R, Word RC, Godinez M (2005) Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes. Nano Lett 5:2005–2008CrossRefGoogle Scholar
  7. 7.
    Ng HT, Han J, Yamada T, Nguyen P, Chen YP, Meyyappan M (2004) Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett 4:1247–1252CrossRefGoogle Scholar
  8. 8.
    Hamann TW, Martinson ABE, Elam JW, Pellin MJ, Hupp JT (2008) Aerogel templated ZnO dye-sensitized solar cell. Adv Mater 20:1560–1564CrossRefGoogle Scholar
  9. 9.
    Wang X, Summers CJ, Wang ZL (2004) Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett 4:423–426CrossRefGoogle Scholar
  10. 10.
    Moussodia RO, Balan L, Merlin C, Mustin C, Schneider R (2010) Biocompatible and stable ZnO quantum dots generated by functionalization with siloxane-core PAMAM dendrons. J Mater Chem 20:1147–1155CrossRefGoogle Scholar
  11. 11.
    Tang XS, Choo ES, Li L, Ding J, Xue JM (2010) Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications. Chem Mater 2:3383–3388CrossRefGoogle Scholar
  12. 12.
    Chu D, Masuda Y, Ohji T, Kato K (2010) Formation and photocatalytic application of ZnO nanotubes using aqueous solution. Langmuir 26:2811–2815CrossRefGoogle Scholar
  13. 13.
    Daneshvara N, Salari D, Khataee AR (2001) Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A 162:317–322CrossRefGoogle Scholar
  14. 14.
    Yan H, Hou J, Fu Z, Yang B, Yang P, Liu K, Wen M, Chen Y, Fu S, Li F (2009) Growth and photocatalytic properties of one-dimensional ZnO nanostructures prepared by thermal evaporation. Mater Res Bull 44:1954–1958CrossRefGoogle Scholar
  15. 15.
    Pardeshi SK, Patil AB (2009) Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide. J Hazard Mater 163:403–407CrossRefGoogle Scholar
  16. 16.
    Khodja AA, Sheili T, Pilichowski JF, Boule P (2001) Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J Photochem Photobiol A 141:231–239CrossRefGoogle Scholar
  17. 17.
    Ma C, Zhou Z, Wei H, Yan Z, Wang Z, Zhang Y (2011) Rapid large-scale preparation of ZnO nanowires for photocatalytic application. Nanoscale Res Lett 6:536CrossRefGoogle Scholar
  18. 18.
    Sun T, Qiu J, Liang C (2008) Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays. J Phys Chem C 112:715–721CrossRefGoogle Scholar
  19. 19.
    Wang H, Li G, Jia L, Wang G, Tang C (2008) Controllable preferential-etching synthesis and photocatalytic activity of porous ZnO nanotubes. J Phys Chem C 112:11738–11743CrossRefGoogle Scholar
  20. 20.
    Wei L, Wei B, Lingling X, Yan Z, Hong G, Jia L (2012) Photocatalytic properties of hierarchical ZnO flowers synthesized by a sucrose-assisted hydrothermal method. Appl Surf Sci 259:557–561CrossRefGoogle Scholar
  21. 21.
    Wan Q, Wang TH, Zhao JC (2005) Enhanced photocatalytic activity of ZnO nanotetrapods. Appl Phys Lett 87:083105-3Google Scholar
  22. 22.
    Soofivand F, Salavati-Niasari M, Mohandes F (2013) Novel precursor-assisted synthesis and characterization of zinc oxide nanoparticles/nanofibers. Mater Lett 98:55–58CrossRefGoogle Scholar
  23. 23.
    Salavati-Niasari M, Davar F, Mazaheri M (2008) Preparation of ZnO nanoparticles from [bis(acetylacetonato)zinc(II)]–oleylamine complex by thermal decomposition. Mater Lett 62:1890–1892CrossRefGoogle Scholar
  24. 24.
    Salavati-Niasari M, Davar F, Khansari A (2011) Nanosphericals and nanobundles of ZnO: synthesis and characterization. J Alloys Compd 509:61–65CrossRefGoogle Scholar
  25. 25.
    Babaheydari AK, Salavati-Niasari M, Khansari A (2012) Solvent-less synthesis of zinc oxide nanostructures from Zn(salen) as precursor and their optical properties. Particuology 10:759–764CrossRefGoogle Scholar
  26. 26.
    Salavati-Niasari M, Davar F, Fereshteh Z (2009) Synthesis and characterization of ZnO nanocrystals from thermolysis of new precursor. Chem Eng J 146:498–502CrossRefGoogle Scholar
  27. 27.
    Greene LE, Law M, Goldberger J, Kim F, Johnson JC, Zhang Y, Saykally RJ, Yang P (2003) Low-temperature wafer-scale production of ZnO nanowire arrays. Angew Chem Int Ed 42:3031–3034CrossRefGoogle Scholar
  28. 28.
    Kong XY, Wang ZL (2004) Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett 3:1625–1631CrossRefGoogle Scholar
  29. 29.
    Kawakami M, Hartanto AB, Nakata Y, Okada T (2003) Synthesis of ZnO nanorods by nanoparticle assisted pulsed-laser deposition. Jpn J Appl Phys 42:L33–L35CrossRefGoogle Scholar
  30. 30.
    Lee CJ, Lee TJ, Lyu SC, Zhang Y, Ruh H, Lee HJ (2003) Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl Phys Lett 81:3648–3650CrossRefGoogle Scholar
  31. 31.
    Baxter JB, Aydil ES (2005) Nanowire-based dye-sensitized solar cells. Appl Phys Lett 86:53114-1–53114-3CrossRefGoogle Scholar
  32. 32.
    Liu B, Zeng HC (2003) Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc 125:4430–4431CrossRefGoogle Scholar
  33. 33.
    Guo L, Ji YL, Xu H, Simon P, Wu Z (2002) Regularly shaped, single-crystalline zno nanorods with wurtzite structure. J Am Chem Soc 124:14864–14865CrossRefGoogle Scholar
  34. 34.
    Liu X, Afzaal M, Ramasamy K, O’Brien P, Akhtar J (2009) Synthesis of ZnO hexagonal single-crystal slices with predominant (0001) and (0001j) facets by poly(ethylene glycol)-assisted chemical bath deposition. J Am Chem Soc 131:15106–15107CrossRefGoogle Scholar
  35. 35.
    Tian ZR, Liu J, Voigt JA, Mckenzie B, Xu H (2003) Hierarchical and self-similar growth of self-assembled crystals. Angew Chem Int Ed 42:413–417CrossRefGoogle Scholar
  36. 36.
    Zhang T, Dong W, Keeter-Brewer M, Konar S, Njabon RN, Tian ZR (2006) Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites. J Am Chem Soc 128:10960–10968CrossRefGoogle Scholar
  37. 37.
    Du J, Liu Z, Huang Y, Gao Y, Han B, Li W, Yang G (2005) Control of ZnO morphologies via surfactants assisted route in the subcritical water. J Cryst Growth 280:126–134CrossRefGoogle Scholar
  38. 38.
    Liu J, Huang X, Li Y, Duan J, Ai H (2006) Large-scale synthesis of flower-like ZnO structures by a surfactant-free and low-temperature process. Mater Chem Phys 98:523–527CrossRefGoogle Scholar
  39. 39.
    Masuda Y, Kinoshita N, Sato F, Koumoto K (2006) Site-selective deposition and morphology control of UV- and visible-light-emitting ZnO crystals. Cryst Growth Des 6:75–78CrossRefGoogle Scholar
  40. 40.
    Du Y, Hao C, Wang G (2008) Preparation of floral-patterned ZnO/MWCNT heterogeneity structure using microwave irradiation heating method. Mater Lett 62:30–32CrossRefGoogle Scholar
  41. 41.
    Byrappa K, Subramani AK, Ananda S, Rai KML, Dinesh R, Yoshimura M (2006) Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO. Bull Mater Sci 29:433–439CrossRefGoogle Scholar
  42. 42.
    Rahman QI, Ahmad M, Misra SK, Lohani M (2013) Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Mater Lett 91:170–174CrossRefGoogle Scholar
  43. 43.
    Yang JL, An SJ, Park WI, Yi GC, Choi W (2004) Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition. Adv Mater 16:1661–1664CrossRefGoogle Scholar
  44. 44.
    Patil KR, Hwang YK, Kim MJ, Chang JS, Park SE (2004) Preparation of thin films comprising palladium nanoparticles by a solid–liquid interface reaction technique. J Colloid Interface Sci 276:333–338CrossRefGoogle Scholar
  45. 45.
    Godbole PD, Mitra A, Pasricha R, Mandale AB, Patil KR (2005) Deposition and characterization of silver nano-films by a novel solid liquid interface reaction technique (SLIRT). Mater Lett 59:1958–1961CrossRefGoogle Scholar
  46. 46.
    Li B, Wang Y (2010) Facile synthesis and enhanced photocatalytic performance of flower-like ZnO hierarchical microstructures. J Phys Chem C 114:890–896CrossRefGoogle Scholar
  47. 47.
    Gonzalez AEJ, Soto Urueta JA, Suarez-Parra R (1998) Optical and electrical characteristics of aluminum-doped ZnO thin films prepared by solgel technique. J Cryst Growth 192:430–438CrossRefGoogle Scholar
  48. 48.
    Tonto P, Mekasuwandumrong O, Phatanasri S, Pavarajarn V, Praserthdam P (2008) Preparation of ZnO nanorod by solvothermal reaction of zinc acetate in various alcohols. Ceram Int 34:57–62CrossRefGoogle Scholar
  49. 49.
    Bandyopadhyay S, Paul GK, Roy R, Sen SK, Sen S (2002) Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol–gel technique. Mater Chem Phys 74:83–91CrossRefGoogle Scholar
  50. 50.
    Nyquist RA, Kagel RO (1971) Infrared spectra of inorganic compound. Academic Press Inc., London, p 220Google Scholar
  51. 51.
    Giri PK, Bhattacharyya S, Chetia B, Kumari S, Singh DK, Iyer PK (2011) High-yield chemical synthesis of hexagonal ZnO nanoparticles and nanorods with excellent optical properties. J Nanosci Nanotechnol 11:1–6CrossRefGoogle Scholar
  52. 52.
    Kansal SK, Kaur N, Singh S (2009) Photocatalytic degradation of two commercial reactive dyes in aqueous phase using nanophotocatalysts. Nanoscale Res Lett 4:709–716CrossRefGoogle Scholar
  53. 53.
    Li L, Yang H, Yu J, Chen Y, Ma J, Zhang J, Song Y, Gao F (2009) Controllable growth of ZnO nanowires with different aspect ratios and microstructures and their photoluminescence and photosensitive properties. J Cryst Growth 311:4199–4206CrossRefGoogle Scholar
  54. 54.
    Poul L, Jouini N, Fiévet F (2000) Layered hydroxide metal acetates (metal = zinc, cobalt, and nickel): elaboration via hydrolysis in polyol medium and comparative study. Chem Mater 12:3123–3132CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Aarti H. Jadhav
    • 1
  • Sagar H. Patil
    • 1
  • Shivaram D. Sathaye
    • 2
  • Kashinath R. Patil
    • 1
  1. 1.Center for Materials CharacterizationNational Chemical LaboratoryPuneIndia
  2. 2.PuneIndia

Personalised recommendations