Journal of Materials Science

, Volume 49, Issue 16, pp 5626–5634 | Cite as

Multi-scale 3D imaging of absorbing porous materials for solid oxide fuel cells

  • Julie Villanova
  • Peter Cloetens
  • Heikki Suhonen
  • Jérôme Laurencin
  • François Usseglio-Viretta
  • Elisa Lay
  • Gérard Delette
  • Pierre Bleuet
  • David Jauffrès
  • Denis Roussel
  • Aaron Z. Lichtner
  • Christophe Louis Martin


The performance of advanced functional materials for fuel cell applications are closely linked to the material composition and morphology at the micro and nano-scales. 3D characterization techniques that can provide bulk information at these fine scales are therefore essential for microstructure optimization of these materials. Here, the X-ray nano-holotomography technique is used to image various multi-phase and absorbing solid oxide fuel cell electrodes. Different porous structures for typical commercial cells and innovative electrode designs obtained using a freeze-casting process are studied. Taking advantage of the geometrical setup and the use of high energy X-rays, both large reconstructions (field of view: 150 µm) and local tomography at higher resolution (field of view: 50 µm) can be performed on the same sample to have a multi-scale approach. This produces highly representative sample volumes with a size/resolution ratio that allows the geometric and physical properties of the materials to be calculated, e.g., connectivity of each phase, mean particles diameters, specific surface area, particle size distributions, tortuosity factors, and densities of triple boundary lengths.


Solid Oxide Fuel Cell Anode Layer European Synchrotron Radiation Facility Large Reconstruction Lanthanum Strontium Cobalt Ferrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank J. M. Fabbri and B. Florin for the efficient management of the SOFC sample preparation, performed on the Nanocharacterization Platform at CEA. Financial support from the Materials World Network program and the French Agence Nationale de la Recherche (ANR 2010 BLAN 0931 01) and the US National Science Foundation (Grant number DMR-1008600) is gratefully acknowledged.


  1. 1.
    Brandon DG, Kaplan WD (2008) Microstructural characterization of materials. Wiley, LondonCrossRefGoogle Scholar
  2. 2.
    Möbus G, Inkson BJ (2007) Nanoscale tomography in materials science. Mater Today 10(12):18–25CrossRefGoogle Scholar
  3. 3.
    Leary R, Midgley PA, Thomas JM (2012) Recent advances in the application of electron tomography to materials chemistry. Acc Chem Res 45(10):1782–1791CrossRefGoogle Scholar
  4. 4.
    Salvo L, Cloetens P, Maire E, Zabler S, Blandin JJ, Buffière JY, Ludwig W, Boller E, Bellet D, Josserond C (2003) X-ray micro-tomography an attractive characterisation technique in materials science. Nucl Instrum Methods B 200:273–286CrossRefGoogle Scholar
  5. 5.
    Withers PJ (2007) Review: X-ray nanotomography. Mater Today 10(12):26–34CrossRefGoogle Scholar
  6. 6.
    Kubis AJ, Shiflet GJ, Dunn DN, Hull R (2004) Focused ion-beam tomography. Metall Mater Trans A 35A:1935–1943CrossRefGoogle Scholar
  7. 7.
    Holzer L, Cantoni M (2012) Review of FIB tomography. In: Utke I, Moshkalev SA, Russell P (eds) Nanofabrication using focused ion and electrons beams: principles and applications, Chap. 11. Oxford University Press, New YorkGoogle Scholar
  8. 8.
    Menzler NH, Tietz F, Uhlenbruck S, Buchkremer HP, Stöver D (2010) Materials and manufacturing technologies for solid oxide fuel cells. J Mater Sci 45:3109–3135. doi: 10.1007/s10853-010-4279-9 CrossRefGoogle Scholar
  9. 9.
    Simwonis D, Tietz F, Stöver D (2000) Nickel coarsening in annealed Ni/8YSZ anode substrate for solid oxide fuel cells. Solid State Ionics 132:241–251CrossRefGoogle Scholar
  10. 10.
    Malzbender J, Steinbrech RW, Singheiser L (2009) A review of advanced techniques for characterising SOFC behaviour. Fuel Cells 9(6):785–793CrossRefGoogle Scholar
  11. 11.
    Lay-Grindler E, Laurencin J, Delette G, Aicart J, Petitjean M, Dessemond L (2013) Micromodelling of solid oxide electrolysis cell: from performance to durability. Int J Hydrogen Energy 38:6917–6929CrossRefGoogle Scholar
  12. 12.
    Laurencin J, Kane D, Delette G, Deseure J, Lefebvre-Joud F (2011) Modelling of solid oxide steam electrolyser: impact of the operating conditions on hydrogen production. J Power Sources 196:2080–2093CrossRefGoogle Scholar
  13. 13.
    Holzer L, Wiedenmann D, Münch B, Keller L, Prestat M, Gasser Ph, Robertson I, Grobéty B (2013) The influence of constrictivity on the effective transport properties of porous layers in electrolysis and fuel cells. J Mater Sci 48:2934–2952. doi: 10.1007/s10853-012-6968-z CrossRefGoogle Scholar
  14. 14.
    Jiang SP, Chan SH (2004) A review of anode materials development in solid oxide fuel cells. J Mater Sci 39:4405–4439. doi: 10.1023/B:JMSC.0000034135.52164.6b CrossRefGoogle Scholar
  15. 15.
    Bruno G, Efremov AM, Levandovskyi AN, Clausen B (2011) Connecting the macro and microstrain responses in technical porous ceramics: modeling and experimental validations. J Mater Sci 46:161–173. doi: 10.1007/s10853-010-4899-0 CrossRefGoogle Scholar
  16. 16.
    Bruno G, Efremov AM, An CP, Wheaton BR, Hughes DJ (2012) Connecting the macro and microstrain responses in technical porous ceramics. Part II: microcracking. J Mater Sci 47:3674–3689. doi: 10.1007/s10853-011-6216-y CrossRefGoogle Scholar
  17. 17.
    Villanova J, Laurencin J, Cloetens P, Bleuet P, Delette G, Suhonen H, Usseglio-Viretta F (2013) 3D phase mapping of SOFC YSZ/Ni cermet at the nanoscale by holographic X-ray nanotomography. J Power Sources 243:841–849CrossRefGoogle Scholar
  18. 18.
    Martınez-Criado G, Tucoulou R, Cloetens P, Bleuet P, Bohic S, Cauzid J, Kieffer I, Kosior E, Laboure S, Petitgirard S, Rack A, Sans JA, Segura-Ruiz J, Suhonen H, Susini J, Villanova J (2012) Status of the hard X-ray microprobe beamline Id22 of the European Synchrotron Radiation Facility. J Synchrotron Rad 19:10–18CrossRefGoogle Scholar
  19. 19.
    Lichtner AZ, Jauffrès D, Martin CL, Bordia RK (2013) Processing of hierarchical and anisotropic porosity LSM–YSZ composites. J Am Chem Soc 96(9):2745–2753Google Scholar
  20. 20.
    Basu RN, Blass G, Buchkremer HP, Stöver D, Tietz F, Wessel E, Vinke IC (2005) Simplified processing of anode-supported thin film planar solid oxide fuel cells. J Eur Ceram Soc 25:463–471CrossRefGoogle Scholar
  21. 21.
    Cloetens P, Ludwig W, Baruchel J, Van Dyck D, Van Landuyt J, Guigay J-P, Schlenker M (1999) Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation X-rays. Appl Phys Lett 75:2912–2914CrossRefGoogle Scholar
  22. 22.
    Requena G, Cloetens P, Altendorfer W, Poletti C, Tolnai D, Warchomicka F, Degischer H (2009) Sub-micrometer synchrotron tomography of multiphase metals using Kirkpatrick–Baez optics. Scripta Mater 61:760–763CrossRefGoogle Scholar
  23. 23.
    Henke BL, Gullikson EM, Davis JC (1993) X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z = 1–92. Atom Data Nucl Data Tables 54(3):181–342CrossRefGoogle Scholar
  24. 24.
    Paganin DM (2006) Coherent X-Ray optics, Vol. 6 of Oxford series on synchrotron radiation. Oxford University Press, OxfordCrossRefGoogle Scholar
  25. 25.
    Beerlink A, Thutupalli S, Mell M, Bartels M, Cloetens P, Herminghaus S, Salditt T (2012) X-ray propagation imaging of a lipid bilayer in solution. Soft Matter 8:4595–4601CrossRefGoogle Scholar
  26. 26.
    Delette G, Laurencin J, Usseglio-Viretta F, Villanova J, Bleuet P, Lay-Grindler E, Le Bihan T (2013) Thermo-elastic properties of SOFC/SOEC electrode materials determined from three-dimensional microstructural reconstructions. Int J Hydrogen Energy 38:12379–12391CrossRefGoogle Scholar
  27. 27.
    Lay-Grindler E, Laurencin J, Villanova J, Kieffer I, Le Bihan T, Bleuet P, Mansuy A, Delette G (2013) Degradation study of the La0.6Sr0.4Co0.2Fe0.8O3 solid oxide electrolysis cell (SOEC) anode after high temperature electrolysis operation. ECS Trans 57(1):3177–3187CrossRefGoogle Scholar
  28. 28.
    Usseglio-Viretta F, Laurencin J, Delette G, Villanova J, Cloetens P, Leguillon D (2014) Quantitative microstructure characterization of a Ni–YSZ bi-layer coupled with simulated electrode polarisation. J Power Sources 256:394–403CrossRefGoogle Scholar
  29. 29.
    Suhonen H, Xu F, Helfen L, Ferrero C, Vladimirov P, Cloetens P (2012) X-ray phase contrast and fluorescence nanotomography for material studies. Int J Mater Res 103(2):179–183CrossRefGoogle Scholar
  30. 30.
    Mimura H, Handa S, Kimura T, Yumoto H, Yamakawa D, Yokoyama H, Matsuyama S, Inagaki K, Yamamura K, Sano Y (2009) Breaking the 10 nm barrier in hard X-ray focusing. Nat Phys 6:122–125CrossRefGoogle Scholar
  31. 31.
    Guan Y, Gong YH, Li WJ, Gelb J, Zhang L, Liu G, Zhang XB, Song X, Xia C, Xiong Y, Wang HQ, Wang H, Yun WB, Tian YC (2011) Quantitative analysis of micro structural and conductivity evolution of Ni–YSZ anodes during thermal cycling based on nano-computed tomography. J Power Sources 196:10601–10605CrossRefGoogle Scholar
  32. 32.
    Grew KN, Chu YS, Yi J, Peracchio AA, Izzo JR, Hwu Y, De Carlo F, Chiu WKS (2010) Nondestructive nanoscale 3D elemental mapping and analysis of a solid oxide fuel cell anode. J Electrochem Soc 157(6):B783–B792CrossRefGoogle Scholar
  33. 33.
    Shearing PR, Gelb J, Yi J, Lee W-K, Drakopolous M, Brandon NP (2010) Analysis of triple phase contact in Ni–YSZ microstructures using non-destructive X-ray tomography with synchrotron radiation. Electrochem Commun 12:1021–1024CrossRefGoogle Scholar
  34. 34.
    Nelson GJ, Izzo JR, Lombardo JJ, Harris WM, Cocco AP, Chiu WKS, Grew KN, Faes A, Hessler-Wyser A, Van Herle J, Chu YS, Wang S (2011) X-ray imaging analysis of 3D microstructural changes in aged Ni–YSZ anodes. ECS Trans 35(1):1323–1327CrossRefGoogle Scholar
  35. 35.
    Cronin JS, Chen-Wiegart YK, Wang J, Barnett SA (2013) Three-dimensional reconstruction and analysis of an entire solid oxide fuel cell by full-field transmission X-ray microscopy. J Power Sources 233:174–179CrossRefGoogle Scholar
  36. 36.
    Holzer L, Muench B, Wegmann M, Gasser P (2006) FIB-nanotomography of particulate systems—part I: particle shape and topology of interfaces. J Am Ceram Soc 89(8):2577–2585CrossRefGoogle Scholar
  37. 37.
    Metcalfe C, Kesler O, Rivard T, Gitzhofer F, Abatzoglou N (2010) Connected three phase boundary length evaluation in modeled sintered composite solid oxide fuel cell electrodes. J Electrochem Soc 157(9):B1326–B1335CrossRefGoogle Scholar
  38. 38.
    Laurencin J, Quey R, Delette G, Suhonen H, Cloetens P, Bleuet P (2012) Characterisation of solid oxide fuel cell Ni–8YSZ substrate by synchrotron X-ray nano-tomography: from 3D reconstruction to microstructure quantification. J Power Sources 198:182–189CrossRefGoogle Scholar
  39. 39.
    Kanno D, Shikazono N, Takagi N, Matsuzaki K, Kasagi N (2011) Evaluation of SOFC anode polarization simulation using three-dimensional microstructures reconstructed by FIB tomography. Electrochim Acta 56:4015–4021CrossRefGoogle Scholar
  40. 40.
    Wilson JR, Cronin JS, Barnett SA (2011) Linking the microstructure, performance and durability of Ni–yttria-stabilized zirconia solid oxide fuel cell anodes using three-dimensional focused ion beam scanning electron microscopy imaging. Scripta Mater 65(2):67–72CrossRefGoogle Scholar
  41. 41.
    Vivet N, Chupin S, Estrade E, Richard A, Bonnamy S, Rochais D, Bruneton E (2011) 3D microstructural characterization of a solid oxide fuel cell anode reconstructed by focused ion beam tomography. J Power Sources 196:7541–7549CrossRefGoogle Scholar
  42. 42.
    Cronin JS, Wilson JR, Barnett SA (2011) Impact of pore microstructure evolution on polarization resistance of Ni–yttria-stabilized zirconia fuel cell anodes. J Power Sources 196:2640–2643CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Julie Villanova
    • 1
  • Peter Cloetens
    • 1
  • Heikki Suhonen
    • 1
  • Jérôme Laurencin
    • 2
  • François Usseglio-Viretta
    • 2
  • Elisa Lay
    • 2
  • Gérard Delette
    • 2
  • Pierre Bleuet
    • 3
  • David Jauffrès
    • 4
  • Denis Roussel
    • 4
  • Aaron Z. Lichtner
    • 5
  • Christophe Louis Martin
    • 4
  1. 1.ESRF – The European SynchrotronGrenoble Cedex 9France
  2. 2.CEA-LitenGrenobleFrance
  3. 3.CEA, LETI, MINATEC CampusGrenobleFrance
  4. 4.Laboratoire SIMAP-GPM2Université de Grenoble, CNRSSaint-Martin d’HèresFrance
  5. 5.Department of Materials Science and EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations