Skip to main content
Log in

Selective growth of yttrium iron garnet and yttrium ferrite by combinatorial pulsed-laser ablation of common precursors

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate the capability of growing two alternative complex oxides with different stoichiometries and crystal structures, by choosing the appropriate substrate and adjusting the target ablation ratio, and tuning their composition and properties by combinatorial pulsed-laser ablation of their precursors. In particular, we successfully grew epitaxial crystalline yttrium iron garnet (Y3Fe5O12) on yttrium aluminium garnet (Y3Al5O12) substrates and polycrystalline yttrium ferrite (YFeO3) on sapphire (α-Al2O3) substrates by co-ablation of yttrium oxide and iron oxide targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eason RW (2007) Pulsed laser deposition of thin films–applications-led growth of functional materials. Wiley Interscience, Chichester

    Google Scholar 

  2. Khartsev SI, Grishin AM (2005) Bi3Fe5O12/Gd3Ga5O12 (m) magneto-optical photonic crystals. Appl Phys Lett 87:122504-1–122504-3. doi:10.1063/1.2053359

    Article  Google Scholar 

  3. Schenck PK, Klamo JL, Bassim ND, Burke PG, Gerbig YB, Green ML (2008) Combinatorial study of the crystallinity boundary in the HfO2–TiO2–Y2O3 system using pulsed laser deposition library thin films. Thin Solid Films 517:691–694. doi:10.1016/j.tsf.2008.08.001

    Article  Google Scholar 

  4. Gazia R, May-Smith TC, Eason RW (2008) Growth of a hybrid garnet crystal multilayer structure by combinatorial pulsed laser deposition. J Cryst Growth 310:3848–3853. doi:10.1016/j.jcrysgro.2008.05.035

    Article  Google Scholar 

  5. Sloyan KA, May-Smith TC, Zervas M et al (2010) Growth of crystalline garnet mixed films, superlattices and multilayers for optical applications via shuttered combinatorial pulsed laser deposition. Opt Express 18:24679–24687. doi:10.1364/oe.18.024679

    Article  Google Scholar 

  6. Sloyan KA, May-Smith TC, Zervas MN, Eason RW (2012) Crystalline garnet Bragg reflectors for high power, high temperature, and integrated applications fabricated by multi-beam pulsed laser deposition. Appl Phys Lett 101:081117-1–081117-4. doi:10.1063/1.4748107

    Article  Google Scholar 

  7. Lambert L, Grangeon F, Autric M (1999) Crossed beam pulsed laser deposition of cryolite thin films. Appl Surf Sci 138:574–580. doi:10.1016/s0169-4332(98)00456-5

    Article  Google Scholar 

  8. Darby MSB, May-Smith TC, Eason RW (2008) Deposition and stoichiometry control of Nd-doped gadolinium gallium garnet thin films by combinatorial pulsed laser deposition using two targets of Nd:Gd3Ga5O12 and Ga2O3. Appl Phys A 93:477–481. doi:10.1007/s00339-008-4810-x

    Article  Google Scholar 

  9. Nechache R, Harnagea C, Gunawan L et al (2007) Growth, structure, and properties of BiFeO3–BiCrO3 films obtained by dual cross beam PLD. IEEE Trans Ultrason Ferroelectr Freq Control 54:2645–2652. doi:10.1109/tuffc.2007.593

    Article  Google Scholar 

  10. Gyorgy E, Sauthier G, Figueras A et al (2006) Growth of Au–TiO2 nanocomposite thin films by a dual-laser, dual-target system. J Appl Phys 100:114302-1–114302-5. doi:10.1063/1.2372450

    Article  Google Scholar 

  11. Kompitsas M, Giannoudakos A, Gyorgy E et al (2007) Growth of metal-oxide semiconductor nanocomposite thin films by a dual-laser, dual target deposition system. Thin Solid Films 515:8582–8585. doi:10.1016/j.tsf.2007.03.140

    Article  Google Scholar 

  12. Sloyan KA, May-Smith TC, Eason RW, Lunney JG (2009) The effect of relative plasma plume delay on the properties of complex oxide films grown by multi-laser, multi-target combinatorial pulsed laser deposition. Appl Surf Sci 255:9066–9070. doi:10.1016/j.apsusc.2009.06.106

    Article  Google Scholar 

  13. Sanchez-Ake C, Camacho R, Moreno L (2012) Deposition and composition-control of Mn-doped ZnO thin films by combinatorial pulsed laser deposition using two delayed plasma plumes. J Appl Phys 112:044904-1–044904-7. doi:10.1063/1.4747935

    Google Scholar 

  14. Deng Y, Fowlkes JD, Fitz-Gerald JM, Rack PD (2005) Combinatorial thin film synthesis of Gd-doped Y3Al5O12 ultraviolet emitting materials. Appl Phys A 80:787–789. doi:10.1007/s00339-003-2385-0

    Article  Google Scholar 

  15. Dotsch H, Bahlmann N, Zhuromskyy O et al (2005) Applications of magneto-optical waveguides in integrated optics: review. J Opt Soc Am B 22:240–253

    Article  Google Scholar 

  16. Manuilov SA, Fors R, Khartsev SI, Grishin AM (2009) Submicron Y3Fe5O12 film magnetostatic wave band pass filters. J Appl Phys 105:033917-1–033917-9. doi:10.1063/1.3075816

    Article  Google Scholar 

  17. Manuilov SA, Khartsev SI, Grishin AM (2009) Pulsed laser deposited Y3Fe5O12 films: nature of magnetic anisotropy I. J Appl Phys 106:123917-1–123917-11. doi:10.1063/1.3272731

    Article  Google Scholar 

  18. Aichele T, Lorenz A, Hergt R, Gornert P (2003) Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications—a review. Cryst Res Technol 38:575–587. doi:10.1002/crat.200310071

    Article  Google Scholar 

  19. Park JH, Cho JK, Nishimura K, Uchida H, Inoue M (2004) Growth of epitaxial garnet film by LPE for application to integrated magneto-optic light switch arrays. Phys Status Solidi A 201:1976–1979. doi:10.1002/pssa.200304545

    Article  Google Scholar 

  20. Shone M (1985) The technology of YIG film growth. Circuits Syst Signal Process 4:89–103. doi:10.1007/bf01600074

    Article  Google Scholar 

  21. Wei HX, Wang WS (1984) The growth of LPE YIG-films with narrow FMR linewidth. IEEE Trans Magn 20:1222–1223. doi:10.1109/tmag.1984.1063411

    Article  Google Scholar 

  22. Sposito A, May-Smith TC, Stenning GBG, de Groot PAJ, Eason RW (2013) Pulsed laser deposition of high-quality μm-thick YIG films on YAG. Opt Mater Express 3:624–632. doi:10.1364/OME.3.000624

    Article  Google Scholar 

  23. Vertruyen B, Cloots R, Abell JS et al (2008) Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films. Phys Rev B 78:094429-1–094429-9. doi:10.1103/PhysRevB.78.094429

    Article  Google Scholar 

  24. Wee SH, Hong HS, Kim YH, Yoo SI, Kang JH (2003) Fabrication and characterization of Bi-substituted yttrium iron garnet films by pulsed laser deposition. Met Mater Int 9:507–511. doi:10.1007/BF03027160

    Article  Google Scholar 

  25. May-Smith TC, Sloyan KA, Gazia R, Eason RW (2011) Stress engineering and optimization of thick garnet crystal films grown by pulsed laser deposition. Cryst Growth Des 11:1098–1108. doi:10.1021/cg101285r

    Article  Google Scholar 

  26. Sposito A, Gregory SA, Stenning GBG, de Groot PAJ, Eason RW (2014) Compositional tuning of YIG film properties by multi-beam pulsed laser deposition. Thin Solid Films (under review)

Download references

Acknowledgements

The research was funded by the Engineering and Physical Sciences Research Council (EPSRC). Grants: EP/F019300/1, EP/G060363/1, and EP/J008052/1. S.A. Gregory gratefully acknowledges funding by the Defence and Security PhD Scheme managed by Dstl. The authors would like to thank Dr. Mark E. Light in the University of Southampton School of Chemistry for his help with XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sposito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sposito, A., Gregory, S.A. & Eason, R.W. Selective growth of yttrium iron garnet and yttrium ferrite by combinatorial pulsed-laser ablation of common precursors. J Mater Sci 49, 5462–5467 (2014). https://doi.org/10.1007/s10853-014-8259-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8259-3

Keywords

Navigation