Advertisement

Journal of Materials Science

, Volume 49, Issue 15, pp 5462–5467 | Cite as

Selective growth of yttrium iron garnet and yttrium ferrite by combinatorial pulsed-laser ablation of common precursors

  • A. Sposito
  • S. A. Gregory
  • R. W. Eason
Article

Abstract

In this paper, we demonstrate the capability of growing two alternative complex oxides with different stoichiometries and crystal structures, by choosing the appropriate substrate and adjusting the target ablation ratio, and tuning their composition and properties by combinatorial pulsed-laser ablation of their precursors. In particular, we successfully grew epitaxial crystalline yttrium iron garnet (Y3Fe5O12) on yttrium aluminium garnet (Y3Al5O12) substrates and polycrystalline yttrium ferrite (YFeO3) on sapphire (α-Al2O3) substrates by co-ablation of yttrium oxide and iron oxide targets.

Keywords

Yttrium Iron Garnet YFeO3 Gadolinium Gallium Garnet Yttrium Iron Garnet Film Bismuth Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The research was funded by the Engineering and Physical Sciences Research Council (EPSRC). Grants: EP/F019300/1, EP/G060363/1, and EP/J008052/1. S.A. Gregory gratefully acknowledges funding by the Defence and Security PhD Scheme managed by Dstl. The authors would like to thank Dr. Mark E. Light in the University of Southampton School of Chemistry for his help with XRD analysis.

References

  1. 1.
    Eason RW (2007) Pulsed laser deposition of thin films–applications-led growth of functional materials. Wiley Interscience, ChichesterGoogle Scholar
  2. 2.
    Khartsev SI, Grishin AM (2005) Bi3Fe5O12/Gd3Ga5O12 (m) magneto-optical photonic crystals. Appl Phys Lett 87:122504-1–122504-3. doi: 10.1063/1.2053359 CrossRefGoogle Scholar
  3. 3.
    Schenck PK, Klamo JL, Bassim ND, Burke PG, Gerbig YB, Green ML (2008) Combinatorial study of the crystallinity boundary in the HfO2–TiO2–Y2O3 system using pulsed laser deposition library thin films. Thin Solid Films 517:691–694. doi: 10.1016/j.tsf.2008.08.001 CrossRefGoogle Scholar
  4. 4.
    Gazia R, May-Smith TC, Eason RW (2008) Growth of a hybrid garnet crystal multilayer structure by combinatorial pulsed laser deposition. J Cryst Growth 310:3848–3853. doi: 10.1016/j.jcrysgro.2008.05.035 CrossRefGoogle Scholar
  5. 5.
    Sloyan KA, May-Smith TC, Zervas M et al (2010) Growth of crystalline garnet mixed films, superlattices and multilayers for optical applications via shuttered combinatorial pulsed laser deposition. Opt Express 18:24679–24687. doi: 10.1364/oe.18.024679 CrossRefGoogle Scholar
  6. 6.
    Sloyan KA, May-Smith TC, Zervas MN, Eason RW (2012) Crystalline garnet Bragg reflectors for high power, high temperature, and integrated applications fabricated by multi-beam pulsed laser deposition. Appl Phys Lett 101:081117-1–081117-4. doi: 10.1063/1.4748107 CrossRefGoogle Scholar
  7. 7.
    Lambert L, Grangeon F, Autric M (1999) Crossed beam pulsed laser deposition of cryolite thin films. Appl Surf Sci 138:574–580. doi: 10.1016/s0169-4332(98)00456-5 CrossRefGoogle Scholar
  8. 8.
    Darby MSB, May-Smith TC, Eason RW (2008) Deposition and stoichiometry control of Nd-doped gadolinium gallium garnet thin films by combinatorial pulsed laser deposition using two targets of Nd:Gd3Ga5O12 and Ga2O3. Appl Phys A 93:477–481. doi: 10.1007/s00339-008-4810-x CrossRefGoogle Scholar
  9. 9.
    Nechache R, Harnagea C, Gunawan L et al (2007) Growth, structure, and properties of BiFeO3–BiCrO3 films obtained by dual cross beam PLD. IEEE Trans Ultrason Ferroelectr Freq Control 54:2645–2652. doi: 10.1109/tuffc.2007.593 CrossRefGoogle Scholar
  10. 10.
    Gyorgy E, Sauthier G, Figueras A et al (2006) Growth of Au–TiO2 nanocomposite thin films by a dual-laser, dual-target system. J Appl Phys 100:114302-1–114302-5. doi: 10.1063/1.2372450 CrossRefGoogle Scholar
  11. 11.
    Kompitsas M, Giannoudakos A, Gyorgy E et al (2007) Growth of metal-oxide semiconductor nanocomposite thin films by a dual-laser, dual target deposition system. Thin Solid Films 515:8582–8585. doi: 10.1016/j.tsf.2007.03.140 CrossRefGoogle Scholar
  12. 12.
    Sloyan KA, May-Smith TC, Eason RW, Lunney JG (2009) The effect of relative plasma plume delay on the properties of complex oxide films grown by multi-laser, multi-target combinatorial pulsed laser deposition. Appl Surf Sci 255:9066–9070. doi: 10.1016/j.apsusc.2009.06.106 CrossRefGoogle Scholar
  13. 13.
    Sanchez-Ake C, Camacho R, Moreno L (2012) Deposition and composition-control of Mn-doped ZnO thin films by combinatorial pulsed laser deposition using two delayed plasma plumes. J Appl Phys 112:044904-1–044904-7. doi: 10.1063/1.4747935 Google Scholar
  14. 14.
    Deng Y, Fowlkes JD, Fitz-Gerald JM, Rack PD (2005) Combinatorial thin film synthesis of Gd-doped Y3Al5O12 ultraviolet emitting materials. Appl Phys A 80:787–789. doi: 10.1007/s00339-003-2385-0 CrossRefGoogle Scholar
  15. 15.
    Dotsch H, Bahlmann N, Zhuromskyy O et al (2005) Applications of magneto-optical waveguides in integrated optics: review. J Opt Soc Am B 22:240–253CrossRefGoogle Scholar
  16. 16.
    Manuilov SA, Fors R, Khartsev SI, Grishin AM (2009) Submicron Y3Fe5O12 film magnetostatic wave band pass filters. J Appl Phys 105:033917-1–033917-9. doi: 10.1063/1.3075816 CrossRefGoogle Scholar
  17. 17.
    Manuilov SA, Khartsev SI, Grishin AM (2009) Pulsed laser deposited Y3Fe5O12 films: nature of magnetic anisotropy I. J Appl Phys 106:123917-1–123917-11. doi: 10.1063/1.3272731 CrossRefGoogle Scholar
  18. 18.
    Aichele T, Lorenz A, Hergt R, Gornert P (2003) Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications—a review. Cryst Res Technol 38:575–587. doi: 10.1002/crat.200310071 CrossRefGoogle Scholar
  19. 19.
    Park JH, Cho JK, Nishimura K, Uchida H, Inoue M (2004) Growth of epitaxial garnet film by LPE for application to integrated magneto-optic light switch arrays. Phys Status Solidi A 201:1976–1979. doi: 10.1002/pssa.200304545 CrossRefGoogle Scholar
  20. 20.
    Shone M (1985) The technology of YIG film growth. Circuits Syst Signal Process 4:89–103. doi: 10.1007/bf01600074 CrossRefGoogle Scholar
  21. 21.
    Wei HX, Wang WS (1984) The growth of LPE YIG-films with narrow FMR linewidth. IEEE Trans Magn 20:1222–1223. doi: 10.1109/tmag.1984.1063411 CrossRefGoogle Scholar
  22. 22.
    Sposito A, May-Smith TC, Stenning GBG, de Groot PAJ, Eason RW (2013) Pulsed laser deposition of high-quality μm-thick YIG films on YAG. Opt Mater Express 3:624–632. doi: 10.1364/OME.3.000624 CrossRefGoogle Scholar
  23. 23.
    Vertruyen B, Cloots R, Abell JS et al (2008) Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films. Phys Rev B 78:094429-1–094429-9. doi: 10.1103/PhysRevB.78.094429 CrossRefGoogle Scholar
  24. 24.
    Wee SH, Hong HS, Kim YH, Yoo SI, Kang JH (2003) Fabrication and characterization of Bi-substituted yttrium iron garnet films by pulsed laser deposition. Met Mater Int 9:507–511. doi: 10.1007/BF03027160 CrossRefGoogle Scholar
  25. 25.
    May-Smith TC, Sloyan KA, Gazia R, Eason RW (2011) Stress engineering and optimization of thick garnet crystal films grown by pulsed laser deposition. Cryst Growth Des 11:1098–1108. doi: 10.1021/cg101285r CrossRefGoogle Scholar
  26. 26.
    Sposito A, Gregory SA, Stenning GBG, de Groot PAJ, Eason RW (2014) Compositional tuning of YIG film properties by multi-beam pulsed laser deposition. Thin Solid Films (under review)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Optoelectronics Research CentreUniversity of SouthamptonSouthamptonUK
  2. 2.Physics and AstronomyUniversity of SouthamptonSouthamptonUK

Personalised recommendations