Skip to main content
Log in

Synthesis of group VI carbides and nitrides: application in catalytic hydrodechlorination

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Molybdenum and tungsten carbide (Mo2C, W2C) and nitride (Mo2N) were prepared from MoO3 and WO3 by temperature-programmed treatment with C2H6/H2 and N2/H2. We have examined the influence of synthesis procedure, applying single-step (direct carburisation) and two-step (nitridation-carburisation and partial reduction-carburisation) processes, on crystallographic phase and catalytic response in the gas phase hydrodechlorination (HDC) of 1,3-dichlorobenzene (1,3-DCB). Single-step carburisation generated (hexagonal close-packed) hcp-Mo2C and hcp-W2C. Two-step nitridation–carburisation yielded (face-centred cubic) fcc-Mo2C via fcc-Mo2N in a topotactic transformation where surface area was increased (to 145 m2 g−1) at higher gas hourly space velocity (from 4800 to 96000 h−1) and decreasing heating rate (from 0.6 to 0.3 K min−1). Partial reduction of MoO3 prior to carburisation produced a composite (fcc + hcp)-Mo2C. Negligible ambient temperature H2 chemisorption (≤0.3 μmol g−1) was recorded for the synthesised (nitride and carbide) materials, but temperature-programmed desorption (TPD) resulted in significant H2 release (up to 67 μmol g−1 for (fcc + hcp)-Mo2C) that was generated during temperature-programmed reduction. Under the same reaction conditions, hcp- and fcc-carbides delivered equivalent specific HDC activity that was appreciably lower (by a factor of up to 20) than that obtained with fcc-Mo2N. The composite (fcc + hcp)-Mo2C exhibited the highest HDC rate that can be correlated with H2 released during TPD and which approached the performance of a benchmark Ni/SiO2 catalyst. HDC selectivity (to chlorobenzene) as a function of 1,3-DCB conversion coincided for all the nitride and carbide systems but deviated from Ni/SiO2, which favoured concerted HDC to benzene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Revadekar JV, Patil SD (2011) On the surface air temperature variation in relation to chlorofluorocarbons over the indian region. Atmos Environ 45:6658–6668

    Article  Google Scholar 

  2. Keane MA (2011) Supported transition metal catalysts for hydrodechlorination reactions. ChemCatChem 3:800–821

    Article  Google Scholar 

  3. Urbano FJ, Marinas JM (2001) Hydrogenolysis of organohalongen compounds over palladium supported catalysts. J Mol Catal A 173:329–345

    Article  Google Scholar 

  4. Amorim C, Wang X, Keane MA (2011) Application of hydrodechlorination in environmental pollution control: comparison of the performance of supported and unsupported Pd and Ni catalysts. Chin J Catal 32:746–755

    Article  Google Scholar 

  5. Ordóñez S, Sastre H, Díez FV (2000) Hydrodechlorination of aliphatic organochlorinated compounds over commercial hydrogenation catalysts. Appl Catal B 25:49–58

    Article  Google Scholar 

  6. Martin-Martinez M, Gómez-Sainero LM, Alvarez-Montero MA, Bedia J, Rodriguez JJ (2013) Comparison of different precious metals in activated carbon-supported catalysts for the gas-phase hydrodechlorination of chloromethanes. Appl Catal B 132–133:256–265

    Article  Google Scholar 

  7. de Pedro ZM, Diaz E, Mohedano AF, Casas JA, Rodriguez JJ (2011) Compared activity and stability of Pd/Al2O3 and Pd/AC catalysts in 4-chlorophenol hydrodechlorination in different pH media. Appl Catal B 103:128–135

    Article  Google Scholar 

  8. Gómez-Quero S, Cárdenas-Lizana F, Keane MA (2013) Unique selectivity in the hydrodechlorination of 2,4-dichlorophenol over hematite-supported Au. J Catal 303:41–49

    Article  Google Scholar 

  9. Perret N, Wang X, Delannoy L, Potvin C, Louis C, Keane MA (2011) Enhanced selective nitroarene hydrogenation over Au supported on β-Mo2C and β-Mo2C/Al2O3. J Catal 286:172–183

    Article  Google Scholar 

  10. Cárdenas-Lizana F, Gómez-Quero S, Perret N, Kiwi-Minsker L, Keane MA (2011) β-Molybdenum nitride: synthesis mechanism and catalytic response in the gas phase hydrogenation of p-chloronitrobenzene. Catal Sci Technol 1:794–801

    Article  Google Scholar 

  11. Cárdenas-Lizana F, Lamey D, Perret N, Gómez-Quero S, Kiwi-Minsker L, Keane MA (2012) Au/Mo2N as a new catalyst formulation for the hydrogenation of p-chloronitrobenzene in both liquid and gas phases. Catal Commun 21:46–51

    Article  Google Scholar 

  12. Hargreaves JSJ (2013) Heterogeneous catalysis with metal nitrides. Coordin Chem Rev 257:2015–2031

    Article  Google Scholar 

  13. Chen JG (1996) Carbide and nitride overlayers on early transition metal surfaces: preparation. Charact React Chem Rev 96:1477–1498

    Article  Google Scholar 

  14. Gong S, Chen H, Li W, Li B (2005) Synthesis of β-Mo2N0.78 hydrodesulfurization catalyst in mixtures of nitrogen and hydrogen. Appl Catal A 279:257–261

    Article  Google Scholar 

  15. Gong SW, Chen HK, Li W, Li BQ, Hu TD (2005) Dibenzothiophene hydrodesulfurization over alumina-supported beta-Mo2N0.78 catalyst. J Mol Catal A 225:213–216

    Article  Google Scholar 

  16. Márquez-Alvarez C, Calridge JB, York APE, Sloan J, Green MLH (1997) Benzene Hydrogenation over Transition Metal Carbides. In: Froment GF, Delmon B, Grange P (eds) Hydrotreatment and Hydrocracking of Oil Fractions, Proceedings of the 1st International Symposium/6th European Workshop, vol 106. Stud Surf Sci Catal Elsevier, Oostende, pp 485–490

  17. Lee JS, Yeom MH, Park KY, Nam I-S, Chung JS, Kim YG, Moon SH (1991) Preparation and benzene hydrogenation activity of supported molybdenum carbide catalysts. J Catal 128:126–136

    Article  Google Scholar 

  18. Frauwallner M-L, López-Linares F, Lara-Romero J, Scott CE, Ali V, Hernández E, Pereira-Almao P (2011) Toluene hydrogenation at low temperature using a molybdenum carbide catalyst. Appl Catal A 394:62–70

    Article  Google Scholar 

  19. Chai S-H, Schwartz V, Howe JY, Wang X, Kidder M, Overbury SH, Dai S, Jiang D-e (2013) Graphitic mesoporous carbon-supported molybdenum carbides for catalytic hydrogenation of carbon monoxide to mixed alcohols. Microporous Mesoporous Mater 170:141–149

    Article  Google Scholar 

  20. Cárdenas-Lizana F, Lamey D, Gómez-Quero S, Perret N, Kiwi-Minsker L, Keane MA (2011) Selective three-phase hydrogenation of aromatic nitro-compounds over β-molybdenum nitride. Catal Today 173:53–61

    Article  Google Scholar 

  21. Nagai M, Goto Y, Miyata A, Kiyoshi M, Hada K, Oshikawa K, Omi S (1999) Temperature-programmed reduction and XRD Studies of ammonia-treated molybdenum oxide and its activity for carbazole hydrodenitrogenation. J Catal 182:292–301

    Article  Google Scholar 

  22. Delannoy L, Giraudon J-M, Granger P, Leclercq L, Leclercq G (2002) Hydrodechlorination of CCl4 over group VI transition metal carbides. Appl Catal B 37:161–173

    Article  Google Scholar 

  23. Delannoy L, Giraudon J-M, Granger P, Leclercq L, Leclercq G (2000) Group VI transition metal carbides as alternatives in the hydrodechlorination of chlorofluorocarbons. Catal Today 59:231–240

    Article  Google Scholar 

  24. Dhandapani B, Oyama ST (1995) Novel catalysts for selective dehalogenation of CCl2F2(CFC 12). Catal Lett 35:353–360

    Article  Google Scholar 

  25. Oxley JD, Mdleleni MM, Suslick KS (2004) Hydrodehalogenation with sonochemically prepared Mo2C and W2C. Catal Today 88:139–151

    Article  Google Scholar 

  26. de Consuegra LA, Patterson PM, Keane MA (2006) Use of unsupported and silica supported molybdenum carbide to treat chloroarene gas streams. Appl Catal B 65:227–239

  27. Ozkan US, Zhang L, Clark PA (1997) Performance and postreaction characterization of γ-Mo2N catalysts in simultaneous hydrodesulfurization and hydrodenitrogenation reactions. J Catal 172:294–306

    Article  Google Scholar 

  28. Lee JS, Locatelli S, Oyama ST, Boudart M (1990) Molybdenum carbide catalysis 3. Turnover rates for the hydrogenolysis of n-butane. J Catal 125:157–170

    Article  Google Scholar 

  29. Ghampson IT, Sepúlveda C, Garcia R, Radovic LR, Fierro JLF, DeSisto WJ, Escalona N (2012) Hydrodeoxygenation of guaiacol over carbon-supported molybdenum nitride catalysts: effects of nitriding methods and support properties. Appl Catal A 439–440:111–124

    Article  Google Scholar 

  30. Oyama ST (1996) The chemistry of transition metal carbides and nitrides, vol 1. Blackie Academic, Glasgow

    Book  Google Scholar 

  31. Kojima R, Aika K-I (2001) Molybdenum nitride and carbide catalysts for ammonia synthesis. Appl Catal A 219:141–147

    Article  Google Scholar 

  32. Li S, Lee JS (1996) Molybdenum nitride and carbide prepared from heteropolyacids: 1. Preparation and characterization. J Catal 162:76–87

    Article  Google Scholar 

  33. Perret N, Cárdenas-Lizana F, Lamey D, Laporte V, Kiwi-Minsker L, Keane MA (2012) Effect of crystallographic phase (β vs. γ) and surface area on gas phase nitroarene hydrogenation over Mo2N and Au/Mo2N. Top Catal 55:955–968

    Article  Google Scholar 

  34. Afanasiev P (2002) New single source route to the molybdenum nitride Mo2N. Inorg Chem 41:5317–5319

    Article  Google Scholar 

  35. Bouchy C, Schmidt I, Anderson JR, Jacobsen CJH, Derouane EG, Hamid SBD-A (2000) Metastable fcc α-MoC1−x supported on HZSM5: preparation and catalytic performance for the non-oxidative conversion of methane to aromatic compounds. J Mol Catal A 163:283–296

    Article  Google Scholar 

  36. Xiao T-C, York APE, Williams VC, Al-Megren H, Hanif A, Zhou X-Y, Green MLH (2000) Preparation of molybdenum carbides using butane and their catalytic performance. Chem Mater 12:3896–3905

    Article  Google Scholar 

  37. Patterson PM, Das TK, Davis BH (2003) Carbon monoxide hydrogenation over molybdenum and tungsten carbides. Appl Catal A 251:449–455

    Article  Google Scholar 

  38. Bouchy C, Hamid SBD-A, Derouane EG (2000) A new route to the metastable fcc molybdenum carbide α-MoC1−x , Chem Commun 2:125–126

  39. Zhang Y-J, Xin Q, Rodriguez-Ramos I, Guerrero-Ruiz A (1999) Simultaneous hydrodesulfurization of thiophene and hydrogenation of cyclohexene over dimolybdenum nitride catalysts. Appl Catal A 180:237–245

    Article  Google Scholar 

  40. Wise RS, Markel EJ (1994) Synthesis of high surface area molybdenum nitride in mixtures of nitrogen and hydrogen. J Catal 145:344–355

    Article  Google Scholar 

  41. Xiao T, Hanif A, York APE, Sloan J, Green MLH (2002) Study on preparation of high surface area tungsten carbides and phase transition during the carburisation. Phys Chem Chem Phys 4:3522–3529

    Article  Google Scholar 

  42. Decker S, Löfberg A, Bastin J-M, Frennet A (1997) Study of the preparation of bulk tungsten carbide catalysts with C2H6/H2 and C2H4/H2 carburizing mixtures. Catal Lett 44:229–239

    Article  Google Scholar 

  43. Keane MA (1994) The role of catalyst activation in the enantioselective hydrogenation of methyl acetoacetate over silica-supported nickel catalysts. Can J Chem 72:372–381

    Article  Google Scholar 

  44. JCPDS-ICDD, PCPDFWIN, Version 2.2, June 2001

  45. Lee JS, Volpe L, Ribeiro FH, Boudart M (1988) Molybdenum carbide catalysts 2. Topotactic synthesis of unsupported powders. J Catal 112:44–53

    Article  Google Scholar 

  46. Oshikawa K, Nagai M, Omi S (2001) Characterization of molybdenum carbides for methane reforming by TPR, XRD, and XPS. J Phys Chem B 105:9124–9131

    Article  Google Scholar 

  47. Menini C, Park C, Shin E-J, Tavoularis G, Keane MA (2000) Catalytic hydrodehalogenation as a detoxification methodology. Catal Today 62:355–366

    Article  Google Scholar 

  48. Yuan S, Hamid SBD-A, Li Y, Ying P, Xin Q, Derouane EG, Li C (2002) Relationship between the molybdenum phases and the conversion of n-butane over Mo/HZSM-5. J Mol Catal A: Chem 180:245–258

    Article  Google Scholar 

  49. Ashokkumar M, Maruthamuthu P (1989) Preparation and characterization of doped WO3 photocatalyst powders. J Mater Sci 24:2135–2139. doi:10.1007/BF02385433

    Article  Google Scholar 

  50. Volpe L, Boudart M (1985) Compounds of molybdenum and tungsten with high specific surface area II. Carbides. J Solid State Chem 59:348–356

    Article  Google Scholar 

  51. Furimsky E (2003) Metal carbides and nitrides as potential catalysts for hydroprocessing. Appl Catal A 240:1–28

    Article  Google Scholar 

  52. Melo-Banda JA, Domínguez JM, Sandoval-Robles G (2001) Hydrotreating of heavy vacuum gas oil (HVGO) on molybdenum and tungsten nitrides catalytic phases. Catal Today 65:279–284

    Article  Google Scholar 

  53. Colling CW, Choi J-G, Thompson LT (1996) Molybdenum nitride catalysts II. H2 Temperature programmed reduction and NH3 temperature programmed desorption. J Catal 160:35–42

    Article  Google Scholar 

  54. Wei Z, Xin Q, Grange P, Delmon B (1997) TPD and TPR studies of molybdenum nitride. J Catal 168:176–182

    Article  Google Scholar 

  55. Mcgee RCV, Bej SK, Thompson LT (2005) Basic properties of molybdenum and tungsten nitride catalysts. Appl Catal A 284:139–146

    Article  Google Scholar 

  56. Burattin P, Che M, Louis C (2000) Ni/SiO2 materials prepared by deposition-precipitation: influence of the reduction conditions and mechanism of formation of metal particles. J Phys Chem B 104:10482–10489

    Article  Google Scholar 

  57. Martin GA, Mirodatos C, Praliaud H (1981) Chemistry of silica-supported catalysts: preparation activation and reduction. Appl Catal 1:367–382

    Article  Google Scholar 

  58. Choi JG, Brenner JR, Thompson LT (1995) Pyridine hydrodenitrogenation over molybdenum carbide catalysts. J Catal 154:33–40

    Article  Google Scholar 

  59. Volpe L, Boudart M (1985) Compounds of molybdenum and tungsten with high specific surface area I. Nitrides. J Solid State Chem 59:332–347

    Article  Google Scholar 

  60. Kim JH, Kim KL (1999) A study of preparation of tungsten nitride catalysts with high surface area. Appl Catal A 181:103–111

    Article  Google Scholar 

  61. Oyama ST (1992) Preparation and catalytic properties of transition metal carbides and nitrides. Catal Today 15:179–200

    Article  Google Scholar 

  62. Chen W-F, Muckerman JT, Fujita E (2013) Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem Commun 49:8896–8909

    Article  Google Scholar 

  63. Ranhotra GS, Bell AT, Reimer JA (1987) Catalysis over molybdenum carbides and nitrides II. Studies of CO hydrogenation and C2H6 hydrogenolysis. J Catal 108:40–49

    Article  Google Scholar 

  64. Li XS, Zhang YJ, Xin Q, Ji CX, Miao YF, Wang L (1996) Irreversible hydrogen uptake on Mo2N catalyst. React Kinet Catal Lett 57:177–182

    Article  Google Scholar 

  65. Li XS, Chen YX, Zhang YJ, Ji CX, Xin Q (1996) Temperature-programmed desorption and adsorption of hydrogen on Mo2N. React Kinet Catal Lett 58:391–396

    Article  Google Scholar 

  66. Dean JA (1999) Handbook of chemistry, vol 1. McGraw-Hill, New York

    Google Scholar 

  67. Lee JS, Lee KH, Lee JY (1992) Selective chemisorption of carbon monoxide and hydrogen over supported molybdenum carbide catalysts. J Phys Chem 96:362–366

    Article  Google Scholar 

  68. Murthy KV, Patterson PM, Jacobs G, Davis BH, Keane MA (2004) An exploration of activity loss during hydrodechlorination and hydrodebromination over Ni/SiO2. J Catal 223:74–85

    Article  Google Scholar 

  69. Shin E-J, Keane MA (2000) Gas-phase hydrogenation/hydrogenolysis of phenol over supported nickel catalysts. Ind Eng Chem Res 39:883–892

    Article  Google Scholar 

  70. del Toro R, Minchini M, Brito JL, Betancourt P (2013) Unsupported molybdenum carbide and nitride catalysts for polychlorinated biphenyls hydrodechlorination. Catal Lett 143:1145–1152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Keane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jujjuri, S., Cárdenas-Lizana, F. & Keane, M.A. Synthesis of group VI carbides and nitrides: application in catalytic hydrodechlorination. J Mater Sci 49, 5406–5417 (2014). https://doi.org/10.1007/s10853-014-8252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8252-x

Keywords

Navigation