Journal of Materials Science

, Volume 49, Issue 15, pp 5406–5417 | Cite as

Synthesis of group VI carbides and nitrides: application in catalytic hydrodechlorination

  • Satyakrishna Jujjuri
  • Fernando Cárdenas-Lizana
  • Mark A. Keane


Molybdenum and tungsten carbide (Mo2C, W2C) and nitride (Mo2N) were prepared from MoO3 and WO3 by temperature-programmed treatment with C2H6/H2 and N2/H2. We have examined the influence of synthesis procedure, applying single-step (direct carburisation) and two-step (nitridation-carburisation and partial reduction-carburisation) processes, on crystallographic phase and catalytic response in the gas phase hydrodechlorination (HDC) of 1,3-dichlorobenzene (1,3-DCB). Single-step carburisation generated (hexagonal close-packed) hcp-Mo2C and hcp-W2C. Two-step nitridation–carburisation yielded (face-centred cubic) fcc-Mo2C via fcc-Mo2N in a topotactic transformation where surface area was increased (to 145 m2 g−1) at higher gas hourly space velocity (from 4800 to 96000 h−1) and decreasing heating rate (from 0.6 to 0.3 K min−1). Partial reduction of MoO3 prior to carburisation produced a composite (fcc + hcp)-Mo2C. Negligible ambient temperature H2 chemisorption (≤0.3 μmol g−1) was recorded for the synthesised (nitride and carbide) materials, but temperature-programmed desorption (TPD) resulted in significant H2 release (up to 67 μmol g−1 for (fcc + hcp)-Mo2C) that was generated during temperature-programmed reduction. Under the same reaction conditions, hcp- and fcc-carbides delivered equivalent specific HDC activity that was appreciably lower (by a factor of up to 20) than that obtained with fcc-Mo2N. The composite (fcc + hcp)-Mo2C exhibited the highest HDC rate that can be correlated with H2 released during TPD and which approached the performance of a benchmark Ni/SiO2 catalyst. HDC selectivity (to chlorobenzene) as a function of 1,3-DCB conversion coincided for all the nitride and carbide systems but deviated from Ni/SiO2, which favoured concerted HDC to benzene.


Carbide MoO3 Platelet Morphology Platelet Structure Pentafluoroethane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Revadekar JV, Patil SD (2011) On the surface air temperature variation in relation to chlorofluorocarbons over the indian region. Atmos Environ 45:6658–6668CrossRefGoogle Scholar
  2. 2.
    Keane MA (2011) Supported transition metal catalysts for hydrodechlorination reactions. ChemCatChem 3:800–821CrossRefGoogle Scholar
  3. 3.
    Urbano FJ, Marinas JM (2001) Hydrogenolysis of organohalongen compounds over palladium supported catalysts. J Mol Catal A 173:329–345CrossRefGoogle Scholar
  4. 4.
    Amorim C, Wang X, Keane MA (2011) Application of hydrodechlorination in environmental pollution control: comparison of the performance of supported and unsupported Pd and Ni catalysts. Chin J Catal 32:746–755CrossRefGoogle Scholar
  5. 5.
    Ordóñez S, Sastre H, Díez FV (2000) Hydrodechlorination of aliphatic organochlorinated compounds over commercial hydrogenation catalysts. Appl Catal B 25:49–58CrossRefGoogle Scholar
  6. 6.
    Martin-Martinez M, Gómez-Sainero LM, Alvarez-Montero MA, Bedia J, Rodriguez JJ (2013) Comparison of different precious metals in activated carbon-supported catalysts for the gas-phase hydrodechlorination of chloromethanes. Appl Catal B 132–133:256–265CrossRefGoogle Scholar
  7. 7.
    de Pedro ZM, Diaz E, Mohedano AF, Casas JA, Rodriguez JJ (2011) Compared activity and stability of Pd/Al2O3 and Pd/AC catalysts in 4-chlorophenol hydrodechlorination in different pH media. Appl Catal B 103:128–135CrossRefGoogle Scholar
  8. 8.
    Gómez-Quero S, Cárdenas-Lizana F, Keane MA (2013) Unique selectivity in the hydrodechlorination of 2,4-dichlorophenol over hematite-supported Au. J Catal 303:41–49CrossRefGoogle Scholar
  9. 9.
    Perret N, Wang X, Delannoy L, Potvin C, Louis C, Keane MA (2011) Enhanced selective nitroarene hydrogenation over Au supported on β-Mo2C and β-Mo2C/Al2O3. J Catal 286:172–183CrossRefGoogle Scholar
  10. 10.
    Cárdenas-Lizana F, Gómez-Quero S, Perret N, Kiwi-Minsker L, Keane MA (2011) β-Molybdenum nitride: synthesis mechanism and catalytic response in the gas phase hydrogenation of p-chloronitrobenzene. Catal Sci Technol 1:794–801CrossRefGoogle Scholar
  11. 11.
    Cárdenas-Lizana F, Lamey D, Perret N, Gómez-Quero S, Kiwi-Minsker L, Keane MA (2012) Au/Mo2N as a new catalyst formulation for the hydrogenation of p-chloronitrobenzene in both liquid and gas phases. Catal Commun 21:46–51CrossRefGoogle Scholar
  12. 12.
    Hargreaves JSJ (2013) Heterogeneous catalysis with metal nitrides. Coordin Chem Rev 257:2015–2031CrossRefGoogle Scholar
  13. 13.
    Chen JG (1996) Carbide and nitride overlayers on early transition metal surfaces: preparation. Charact React Chem Rev 96:1477–1498CrossRefGoogle Scholar
  14. 14.
    Gong S, Chen H, Li W, Li B (2005) Synthesis of β-Mo2N0.78 hydrodesulfurization catalyst in mixtures of nitrogen and hydrogen. Appl Catal A 279:257–261CrossRefGoogle Scholar
  15. 15.
    Gong SW, Chen HK, Li W, Li BQ, Hu TD (2005) Dibenzothiophene hydrodesulfurization over alumina-supported beta-Mo2N0.78 catalyst. J Mol Catal A 225:213–216CrossRefGoogle Scholar
  16. 16.
    Márquez-Alvarez C, Calridge JB, York APE, Sloan J, Green MLH (1997) Benzene Hydrogenation over Transition Metal Carbides. In: Froment GF, Delmon B, Grange P (eds) Hydrotreatment and Hydrocracking of Oil Fractions, Proceedings of the 1st International Symposium/6th European Workshop, vol 106. Stud Surf Sci Catal Elsevier, Oostende, pp 485–490Google Scholar
  17. 17.
    Lee JS, Yeom MH, Park KY, Nam I-S, Chung JS, Kim YG, Moon SH (1991) Preparation and benzene hydrogenation activity of supported molybdenum carbide catalysts. J Catal 128:126–136CrossRefGoogle Scholar
  18. 18.
    Frauwallner M-L, López-Linares F, Lara-Romero J, Scott CE, Ali V, Hernández E, Pereira-Almao P (2011) Toluene hydrogenation at low temperature using a molybdenum carbide catalyst. Appl Catal A 394:62–70CrossRefGoogle Scholar
  19. 19.
    Chai S-H, Schwartz V, Howe JY, Wang X, Kidder M, Overbury SH, Dai S, Jiang D-e (2013) Graphitic mesoporous carbon-supported molybdenum carbides for catalytic hydrogenation of carbon monoxide to mixed alcohols. Microporous Mesoporous Mater 170:141–149CrossRefGoogle Scholar
  20. 20.
    Cárdenas-Lizana F, Lamey D, Gómez-Quero S, Perret N, Kiwi-Minsker L, Keane MA (2011) Selective three-phase hydrogenation of aromatic nitro-compounds over β-molybdenum nitride. Catal Today 173:53–61CrossRefGoogle Scholar
  21. 21.
    Nagai M, Goto Y, Miyata A, Kiyoshi M, Hada K, Oshikawa K, Omi S (1999) Temperature-programmed reduction and XRD Studies of ammonia-treated molybdenum oxide and its activity for carbazole hydrodenitrogenation. J Catal 182:292–301CrossRefGoogle Scholar
  22. 22.
    Delannoy L, Giraudon J-M, Granger P, Leclercq L, Leclercq G (2002) Hydrodechlorination of CCl4 over group VI transition metal carbides. Appl Catal B 37:161–173CrossRefGoogle Scholar
  23. 23.
    Delannoy L, Giraudon J-M, Granger P, Leclercq L, Leclercq G (2000) Group VI transition metal carbides as alternatives in the hydrodechlorination of chlorofluorocarbons. Catal Today 59:231–240CrossRefGoogle Scholar
  24. 24.
    Dhandapani B, Oyama ST (1995) Novel catalysts for selective dehalogenation of CCl2F2(CFC 12). Catal Lett 35:353–360CrossRefGoogle Scholar
  25. 25.
    Oxley JD, Mdleleni MM, Suslick KS (2004) Hydrodehalogenation with sonochemically prepared Mo2C and W2C. Catal Today 88:139–151CrossRefGoogle Scholar
  26. 26.
    de Consuegra LA, Patterson PM, Keane MA (2006) Use of unsupported and silica supported molybdenum carbide to treat chloroarene gas streams. Appl Catal B 65:227–239Google Scholar
  27. 27.
    Ozkan US, Zhang L, Clark PA (1997) Performance and postreaction characterization of γ-Mo2N catalysts in simultaneous hydrodesulfurization and hydrodenitrogenation reactions. J Catal 172:294–306CrossRefGoogle Scholar
  28. 28.
    Lee JS, Locatelli S, Oyama ST, Boudart M (1990) Molybdenum carbide catalysis 3. Turnover rates for the hydrogenolysis of n-butane. J Catal 125:157–170CrossRefGoogle Scholar
  29. 29.
    Ghampson IT, Sepúlveda C, Garcia R, Radovic LR, Fierro JLF, DeSisto WJ, Escalona N (2012) Hydrodeoxygenation of guaiacol over carbon-supported molybdenum nitride catalysts: effects of nitriding methods and support properties. Appl Catal A 439–440:111–124CrossRefGoogle Scholar
  30. 30.
    Oyama ST (1996) The chemistry of transition metal carbides and nitrides, vol 1. Blackie Academic, GlasgowCrossRefGoogle Scholar
  31. 31.
    Kojima R, Aika K-I (2001) Molybdenum nitride and carbide catalysts for ammonia synthesis. Appl Catal A 219:141–147CrossRefGoogle Scholar
  32. 32.
    Li S, Lee JS (1996) Molybdenum nitride and carbide prepared from heteropolyacids: 1. Preparation and characterization. J Catal 162:76–87CrossRefGoogle Scholar
  33. 33.
    Perret N, Cárdenas-Lizana F, Lamey D, Laporte V, Kiwi-Minsker L, Keane MA (2012) Effect of crystallographic phase (β vs. γ) and surface area on gas phase nitroarene hydrogenation over Mo2N and Au/Mo2N. Top Catal 55:955–968CrossRefGoogle Scholar
  34. 34.
    Afanasiev P (2002) New single source route to the molybdenum nitride Mo2N. Inorg Chem 41:5317–5319CrossRefGoogle Scholar
  35. 35.
    Bouchy C, Schmidt I, Anderson JR, Jacobsen CJH, Derouane EG, Hamid SBD-A (2000) Metastable fcc α-MoC1−x supported on HZSM5: preparation and catalytic performance for the non-oxidative conversion of methane to aromatic compounds. J Mol Catal A 163:283–296CrossRefGoogle Scholar
  36. 36.
    Xiao T-C, York APE, Williams VC, Al-Megren H, Hanif A, Zhou X-Y, Green MLH (2000) Preparation of molybdenum carbides using butane and their catalytic performance. Chem Mater 12:3896–3905CrossRefGoogle Scholar
  37. 37.
    Patterson PM, Das TK, Davis BH (2003) Carbon monoxide hydrogenation over molybdenum and tungsten carbides. Appl Catal A 251:449–455CrossRefGoogle Scholar
  38. 38.
    Bouchy C, Hamid SBD-A, Derouane EG (2000) A new route to the metastable fcc molybdenum carbide α-MoC1−x, Chem Commun 2:125–126Google Scholar
  39. 39.
    Zhang Y-J, Xin Q, Rodriguez-Ramos I, Guerrero-Ruiz A (1999) Simultaneous hydrodesulfurization of thiophene and hydrogenation of cyclohexene over dimolybdenum nitride catalysts. Appl Catal A 180:237–245CrossRefGoogle Scholar
  40. 40.
    Wise RS, Markel EJ (1994) Synthesis of high surface area molybdenum nitride in mixtures of nitrogen and hydrogen. J Catal 145:344–355CrossRefGoogle Scholar
  41. 41.
    Xiao T, Hanif A, York APE, Sloan J, Green MLH (2002) Study on preparation of high surface area tungsten carbides and phase transition during the carburisation. Phys Chem Chem Phys 4:3522–3529CrossRefGoogle Scholar
  42. 42.
    Decker S, Löfberg A, Bastin J-M, Frennet A (1997) Study of the preparation of bulk tungsten carbide catalysts with C2H6/H2 and C2H4/H2 carburizing mixtures. Catal Lett 44:229–239CrossRefGoogle Scholar
  43. 43.
    Keane MA (1994) The role of catalyst activation in the enantioselective hydrogenation of methyl acetoacetate over silica-supported nickel catalysts. Can J Chem 72:372–381CrossRefGoogle Scholar
  44. 44.
    JCPDS-ICDD, PCPDFWIN, Version 2.2, June 2001Google Scholar
  45. 45.
    Lee JS, Volpe L, Ribeiro FH, Boudart M (1988) Molybdenum carbide catalysts 2. Topotactic synthesis of unsupported powders. J Catal 112:44–53CrossRefGoogle Scholar
  46. 46.
    Oshikawa K, Nagai M, Omi S (2001) Characterization of molybdenum carbides for methane reforming by TPR, XRD, and XPS. J Phys Chem B 105:9124–9131CrossRefGoogle Scholar
  47. 47.
    Menini C, Park C, Shin E-J, Tavoularis G, Keane MA (2000) Catalytic hydrodehalogenation as a detoxification methodology. Catal Today 62:355–366CrossRefGoogle Scholar
  48. 48.
    Yuan S, Hamid SBD-A, Li Y, Ying P, Xin Q, Derouane EG, Li C (2002) Relationship between the molybdenum phases and the conversion of n-butane over Mo/HZSM-5. J Mol Catal A: Chem 180:245–258CrossRefGoogle Scholar
  49. 49.
    Ashokkumar M, Maruthamuthu P (1989) Preparation and characterization of doped WO3 photocatalyst powders. J Mater Sci 24:2135–2139. doi: 10.1007/BF02385433 CrossRefGoogle Scholar
  50. 50.
    Volpe L, Boudart M (1985) Compounds of molybdenum and tungsten with high specific surface area II. Carbides. J Solid State Chem 59:348–356CrossRefGoogle Scholar
  51. 51.
    Furimsky E (2003) Metal carbides and nitrides as potential catalysts for hydroprocessing. Appl Catal A 240:1–28CrossRefGoogle Scholar
  52. 52.
    Melo-Banda JA, Domínguez JM, Sandoval-Robles G (2001) Hydrotreating of heavy vacuum gas oil (HVGO) on molybdenum and tungsten nitrides catalytic phases. Catal Today 65:279–284CrossRefGoogle Scholar
  53. 53.
    Colling CW, Choi J-G, Thompson LT (1996) Molybdenum nitride catalysts II. H2 Temperature programmed reduction and NH3 temperature programmed desorption. J Catal 160:35–42CrossRefGoogle Scholar
  54. 54.
    Wei Z, Xin Q, Grange P, Delmon B (1997) TPD and TPR studies of molybdenum nitride. J Catal 168:176–182CrossRefGoogle Scholar
  55. 55.
    Mcgee RCV, Bej SK, Thompson LT (2005) Basic properties of molybdenum and tungsten nitride catalysts. Appl Catal A 284:139–146CrossRefGoogle Scholar
  56. 56.
    Burattin P, Che M, Louis C (2000) Ni/SiO2 materials prepared by deposition-precipitation: influence of the reduction conditions and mechanism of formation of metal particles. J Phys Chem B 104:10482–10489CrossRefGoogle Scholar
  57. 57.
    Martin GA, Mirodatos C, Praliaud H (1981) Chemistry of silica-supported catalysts: preparation activation and reduction. Appl Catal 1:367–382CrossRefGoogle Scholar
  58. 58.
    Choi JG, Brenner JR, Thompson LT (1995) Pyridine hydrodenitrogenation over molybdenum carbide catalysts. J Catal 154:33–40CrossRefGoogle Scholar
  59. 59.
    Volpe L, Boudart M (1985) Compounds of molybdenum and tungsten with high specific surface area I. Nitrides. J Solid State Chem 59:332–347CrossRefGoogle Scholar
  60. 60.
    Kim JH, Kim KL (1999) A study of preparation of tungsten nitride catalysts with high surface area. Appl Catal A 181:103–111CrossRefGoogle Scholar
  61. 61.
    Oyama ST (1992) Preparation and catalytic properties of transition metal carbides and nitrides. Catal Today 15:179–200CrossRefGoogle Scholar
  62. 62.
    Chen W-F, Muckerman JT, Fujita E (2013) Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem Commun 49:8896–8909CrossRefGoogle Scholar
  63. 63.
    Ranhotra GS, Bell AT, Reimer JA (1987) Catalysis over molybdenum carbides and nitrides II. Studies of CO hydrogenation and C2H6 hydrogenolysis. J Catal 108:40–49CrossRefGoogle Scholar
  64. 64.
    Li XS, Zhang YJ, Xin Q, Ji CX, Miao YF, Wang L (1996) Irreversible hydrogen uptake on Mo2N catalyst. React Kinet Catal Lett 57:177–182CrossRefGoogle Scholar
  65. 65.
    Li XS, Chen YX, Zhang YJ, Ji CX, Xin Q (1996) Temperature-programmed desorption and adsorption of hydrogen on Mo2N. React Kinet Catal Lett 58:391–396CrossRefGoogle Scholar
  66. 66.
    Dean JA (1999) Handbook of chemistry, vol 1. McGraw-Hill, New YorkGoogle Scholar
  67. 67.
    Lee JS, Lee KH, Lee JY (1992) Selective chemisorption of carbon monoxide and hydrogen over supported molybdenum carbide catalysts. J Phys Chem 96:362–366CrossRefGoogle Scholar
  68. 68.
    Murthy KV, Patterson PM, Jacobs G, Davis BH, Keane MA (2004) An exploration of activity loss during hydrodechlorination and hydrodebromination over Ni/SiO2. J Catal 223:74–85CrossRefGoogle Scholar
  69. 69.
    Shin E-J, Keane MA (2000) Gas-phase hydrogenation/hydrogenolysis of phenol over supported nickel catalysts. Ind Eng Chem Res 39:883–892CrossRefGoogle Scholar
  70. 70.
    del Toro R, Minchini M, Brito JL, Betancourt P (2013) Unsupported molybdenum carbide and nitride catalysts for polychlorinated biphenyls hydrodechlorination. Catal Lett 143:1145–1152CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Satyakrishna Jujjuri
    • 1
  • Fernando Cárdenas-Lizana
    • 2
  • Mark A. Keane
    • 2
  1. 1.Department of Chemical and Materials EngineeringUniversity of KentuckyLexingtonUSA
  2. 2.Chemical Engineering, School of Engineering and Physical SciencesHeriot-Watt UniversityEdinburghScotland

Personalised recommendations