Journal of Materials Science

, Volume 49, Issue 14, pp 5087–5092 | Cite as

Oxidation potential control of VO2 thin films by metal oxide co-sputtering

  • Jun Oh Choi
  • Hwa Soo Lee
  • Kyung Hyun Ko


For metal-to-insulator transition (MIT) in vanadium oxide thin film, a thermodynamically stable vanadium dioxide (VO2) phase is essential. In VO2 films sputter-deposited on a quartz substrate from a V2O5 target, a radio-frequency (RF) magnetron sputter system at working pressure of 7 mTorr is used. Due to the lower sputtering yield of oxygen compared to vanadium leading to oxygen-ion deficiency, the reduction of V ions is resulted to compensate charge with the oxygen ions. Under lower working pressures, the deposition rate increases, but a simultaneous oxygen-ion deficiency causes the destabilization of VO2. To prevent this, titanium oxide co-deposition is suggested to enrich the oxygen source. When TiO2 is used, it is found that the Ti ion has a stable +4 charge state so that the use of extra oxygen in sputtering prevents the destabilization of VO2. However, this is not the case for TiO. For the latter, Ti ions are oxidized from the +2 state to the +3 and +4 states, and V ions with less oxidation potential are reduced to +3 or so. Pure VO2 thin film exhibits MIT at 66 °C and a large resistivity ratio of four orders of magnitude from 30 to 90 °C. The (V2O5 + TiO2) system under working pressure as low as 5 mTorr yields fairly good films comparable to pure VO2 deposited at 7 mTorr, whereas the use of TiO yields films with MIT absent or considerably weakened.


TiO2 V2O5 Vanadium Oxide Vanadium Dioxide Vanadium Oxide Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chen S, Ma H, Xiang S, Yi X (2007) Fabrication and performance of microbolometer arrays based on nanostructured vanadium oxide thin films. Smart Mater Struct 16:696–700CrossRefGoogle Scholar
  2. 2.
    Eden DD (1981) Vanadium dioxide storage material. Opt Eng 20:377–378Google Scholar
  3. 3.
    Balberg I, Trokman S (1975) High-contrast optical storage in VO2 films. J Appl Phys 46:2111–2119CrossRefGoogle Scholar
  4. 4.
    Chain EE (1991) Optical properties of vanadium dioxide and vanadium pentoxide thin films. Appl Opt 30:2782–2787CrossRefGoogle Scholar
  5. 5.
    Mlyuka NR, Niklasson GA, Granqvist CG (2009) Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal–insulator transition temperature. Appl Phys Lett 95:171909-1CrossRefGoogle Scholar
  6. 6.
    Gao Y, Luo H, Zhang Z, Kang L, Chen Z, Du J, Kanehira M, Cao C (2012) Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing. Nano Energy 1:221–246CrossRefGoogle Scholar
  7. 7.
    Goodenough JB (1971) The two components of the crystallographic transition in VO2. J Solid State Chem 3:490–500CrossRefGoogle Scholar
  8. 8.
    Morin FJ (1959) Oxides which show a metal-to-insulator transition at the Neel temperature. Phys Rev Lett 3:34–36CrossRefGoogle Scholar
  9. 9.
    Xu S, Ma H, Dai S, Jiang ZH (2004) Study on optical and electrical switching properties and phase transition mechanism of Mo6+-doped vanadium dioxide thin films. J Mater Sci 39:489–493. doi: 10.1023/B:JMSC.0000011503.22893.f4 CrossRefGoogle Scholar
  10. 10.
    Livage J (1999) Optical and electrical properties of vanadium oxides synthesized form alkoxides. Coord Chem Rev 190–192:391–403CrossRefGoogle Scholar
  11. 11.
    Guinneton F, Sauques L, Valmalette JC, Cros F, Gavarri JR (2001) Comparative study between nanocrystalline powder and thin film of vanadium dioxide VO2: electrical and infrared properties. J Phys Chem Solids 62:1229–1238CrossRefGoogle Scholar
  12. 12.
    Chen C, Yi X, Zhao X, Xiong B (2001) Characterizations of VO2-based uncooled Microbolometer linear array. Sensors Actuator A 90:212–214CrossRefGoogle Scholar
  13. 13.
    Chen C, Yi X, Zhang J, Xiong B (2001) Micromachined uncooled IR bolometer linear array using VO2 thin films. Int J Infrared Millim 22:53–58CrossRefGoogle Scholar
  14. 14.
    Silversmit G, Depla D, Poelman H, Marin GB, Gryse RD (2004) Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J Electron Spectrosc 135:167–175CrossRefGoogle Scholar
  15. 15.
    Dai L, Chen S, Liu J, Gao Y, Zhou J, Chen Z, Cao C, Luo H, Kanehir M (2013) F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability. Phys Chem Chem Phys 15:11723–11729CrossRefGoogle Scholar
  16. 16.
    Zhou J, Gao Y, Zhang Z, Luo H, Cao C, Chen Z, Dai L and Liu X (2013) VO2 thermochromic smart window for energy savings and generation, Sci. Rep. doi: 10.1038/srep03029
  17. 17.
    Lee MH, Kim MG (1996) RTA and stoichiometry effect on the thermochromism of VO2 thin films. Thin Solid Films 286:219–222CrossRefGoogle Scholar
  18. 18.
    Lappalainen J, Heinilehto S, Jantunen H, Lantoo V (2009) Electrical and optical properties of metal–insulator-transition VO2 thin films. J Electroceram 22:73–77CrossRefGoogle Scholar
  19. 19.
    Sieradzka K, Wojcieszak D, Kaczmarek D, Domaradzki J, Kiriakidis G, Aperathitis E, Kambilafka V, Placido F, Song S (2011) Structural and optical properties of vanadium oxides prepared by microwave-assisted reactive magnetron sputtering. Opt Appl 41:463–469Google Scholar
  20. 20.
    Batista C, Ribeiro RM, Vasco Teixeira (2011) Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows. Nanoscale Res Lett. doi: 10.1186/1556-276X-6-301 Google Scholar
  21. 21.
    Kana JB, Ndjaka JM, Ateba PO, Ngom BD, Manyala N, Nemraoui O, Beye AC, Maaza M (2008) Thermochromic VO2 thin films synthesized by rf-inverted cylindrical magnetron sputtering. Appl Surf Sci 254:3959–3963CrossRefGoogle Scholar
  22. 22.
    Mlyuka NR, Kivaisi RT (2006) Correlation between optical, electrical and structural properties of vanadium dioxide thin films. J Mater Sci 41:5619–5624. doi: 10.1007/s10853-006-0261-y CrossRefGoogle Scholar
  23. 23.
    Gopalakrishnan G, Ramanathan S (2011) Compositional and metal-insulator transition characteristics of sputtered vanadium oxide thin films on yttria-stabilized zirconia. J Mater Sci 46:5768–5774. doi: 10.1007/s10853-011-5532-6 CrossRefGoogle Scholar
  24. 24.
    Wang XJ, Li HD, Fei YJ, Wang X, Xiong YY, Nie YX, Feng KA (2001) XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering. Appl Surf Sci 177:8–14CrossRefGoogle Scholar
  25. 25.
    Shigesato Y, Enomoto M, Odaka H (2000) Thermochromic VO2 films deposited by RF magnetron sputtering using V2O3 or V2O5 targets. Jpn J Appl Phys 39:6016–6024CrossRefGoogle Scholar
  26. 26.
    Dillon RO, Le K, Ianno N (2001) Thermochromic VO2 sputtered by control of a vanadium–oxygen emission ratio. Thin Solid Films 398–399:10–16CrossRefGoogle Scholar
  27. 27.
    Tsai KY, Chin TS, Shieh HPD (2003) Properties of VO2 films sputter-deposited from V2O5 target. Jpn J Appl Phys 42:4480–4483CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Energy System ResearchAjou UniversitySuwonRepublic of Korea

Personalised recommendations